Indoor positioning of shoppers using a network of bluetooth low energy beacons
In this paper we present our work on the indoor positioning of users (shoppers), using a network of Bluetooth Low Energy (BLE) beacons deployed in a large wholesale shopping store. Our objective is to accurately determine which product sections a user is adjacent to while traversing the store, using RSSI readings from multiple beacons, measured asynchronously on a standard commercial mobile device. We further wish to leverage the store layout (which imposes natural constraints on the movement of users) and the physical configuration of the beacon network, to produce a robust and efficient solution. We start by describing our application context and hardware configuration, and proceed to introduce our node-graph model of user location. We then describe our experimental work which begins with an investigation of signal characteristics along and across aisles. We propose three methods of localization, using a “nearest-beacon” approach as a base-line; exponentially averaged weighted range estimates; and a particle-filter method based on the RSSI attenuation model and Gaussian-noise. Our results demonstrate that the particle filter method significantly out-performs the others. Scalability also makes this method ideal for applications run on mobile devices with more limited computational capabilities
Funding
InnovateUK
History
School affiliated with
- School of Computer Science (Research Outputs)