A practical multirobot localization system
We present a fast and precise vision-based software intended for multiple robot localization. The core component of the software is a novel and efficient algorithm for black and white pattern detection. The method is robust to variable lighting conditions, achieves sub-pixel precision and its computational complexity is independent of the processed image size. With off-the-shelf computational equipment and low-cost cameras, the core algorithm is able to process hundreds of images per second while tracking hundreds of objects with a millimeter precision. In addition, we present the method's mathematical model, which allows to estimate the expected localization precision, area of coverage, and processing speed from the camera's intrinsic parameters and hardware's processing capacity. The correctness of the presented model and performance of the algorithm in real-world conditions is verified in several experiments. Apart from the method description, we also make its source code public at \emph{http://purl.org/robotics/whycon}; so, it can be used as an enabling technology for various mobile robotic problems.
Funding
EU FP7 216240 Replicator
EU FP7 600623 STRANDS
Ministry of Education of the Czech Republic 7AMB12AR022
Ministry of Education of the Czech Republic 7E08006
Ministry of Science of Argentina project ARC/11/11
History
School affiliated with
- School of Computer Science (Research Outputs)