University of Lincoln
Browse

Preparation, design, and characterization of an electrospun polyurethane/calcium chloride nanocomposite scaffold with improved properties for skin tissue regeneration

Download (1.12 MB)
journal contribution
posted on 2024-08-22, 13:17 authored by Mohan Prasath Mani, Hemanth Ponnambalath Mohanadas, Ahmad Athif Mohd Faudzi, Ahmad Fauzi Ismail, Nick TuckerNick Tucker, Shahrol Mohamaddan, Suresh K. Verma, Saravana Kumar Jaganathan

The present research paper explores the potential of electrospun nanofibers in the promising field of skin tissue engineering. Specifically, we propose an advanced preparation and characterization of an electrospun Polyurethane/Calcium Chloride (PU/CaCl2) nanocomposite scaffold, devised to boost the scaffold’s physicochemical and biological properties for skin tissue regeneration. By incorporating CaCl2 into the PU matrix using an electrospinning process, we were able to fabricate a novel nanocomposite scaffold. The morphological examination through Field Emission Scanning Electron Microscope (FESEM) revealed that the fiber diameter of the PU/CaCl2 (563 ± 147 nm) scaffold was notably smaller compared to the control (784 ± 149 nm). The presence of CaCl2 in the PU matrix was corroborated by Fourier-Transform Infrared Spectroscopy (FTIR) and Thermogravimetric Analysis (TGA). Furthermore, the PU/CaCl2 scaffold exhibited superior tensile strength (10.81 MPa) over pristine PU (Tensile ?6.16 MPa, Contact angle - 109° ± 1° and Roughness - 854 ± 32 nm) and revealed enhanced wettability (72° ± 2°) and reduced surface roughness (274 ± 104 nm), as verified by Contact angle and Atomic Force Microscopy. The developed scaffold demonstrated improved anticoagulant properties, indicating its potential for successful integration within a biological environment. The improved properties of the PU/CaCl2 nanocomposite scaffold present a significant advancement in electrospun polymer nanofibers, offering a potential breakthrough in skin tissue engineering. However, additional studies are required to thoroughly evaluate the scaffold’s effectiveness in promoting cell adhesion, proliferation, and differentiation. We aim to catalyze significant advancements in the field by revealing the creation of a potent skin scaffold leveraging electrospun nanofibers. Encouraging deeper exploration into this innovative electrospun composite scaffold for skin tissue engineering, the PU/CaCl2 scaffold stands as a promising foundation for pioneering more innovative, efficient, and sustainable solutions in biomedical applications. 

History

School affiliated with

  • School of Engineering (Research Outputs)
  • College of Health and Science (Research Outputs)

Publication Title

Journal of Industrial Textiles

Volume

54

Publisher

Sage

ISSN

1528-0837

eISSN

1530-8057

Date Accepted

2023-11-30

Date of First Publication

2024-01-01

Date of Final Publication

2024-03-13

Open Access Status

  • Open Access

Date Document First Uploaded

2024-08-22

Usage metrics

    University of Lincoln (Research Outputs)

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC