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Abstract 

Inflammation is the ultimate response to the constant challenges of the immune system by 

microbes, irritants or injury. The inflammatory cascade initiates with the recognition of 

microorganism-derived pathogen associated molecular patterns (PAMPs) and host cell-derived 

damage associated molecular patterns (DAMPs) by the pattern recognition receptors (PRRs). DNA as 

a molecular PAMP or DAMP is sensed directly or via specific binding proteins to instigate pro-

inflammatory response. Some of these DNA binding proteins also participate in canonical DNA repair 

pathways and recognise damaged DNA to initiate DNA damage response.  In this review we aim to 

capture the essence of the complex interplay between DNA damage response and the pro-

inflammatory signalling through representative examples. 

1. Aetiology and molecular consequences of inflammation 

Inflammation, from the latin inflammare: set on fire, in mammals is the natural defence mechanism 

of the immune system in response to the constant challenges it is exposed to including injury, toxins 

and microorganisms, low level cosmic or medical quality radiations (X-ray, -irradiation or UVA/B), 

drugs and air pollutants (e.g. asbestos or cigarette smoke) 1,2*. Inflammation is a hallmark of aging 

and many chronic diseases such as obesity, Chron’s disease, Parkinson’s disease and autoimmune 

diseases just to name a few 3-7.  

 

 

 

*Additional on-line references are marked by superscript numbers 
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The first phase of a complex defence mechanism is acute inflammation instigated by the infiltrated 

peripheral polymorphonuclear leukocytes (neutrophils), granulocytes (eosinophils) and tissue 

resident phagocytes (macrophages) at the site of insult. The pro-inflammatory signal is transmitted 

through the PRRs that can identify danger through DAMPs (e.g. ROS, circulating DNA fragments), 

cytokines or chemokines released by the damaged tissue or PAMPs from pathogens [1] 8. The initial 

role of these cells is to remove the invading pathogen and initiate tissue repair 9.   

One of the major defence mechanisms of the activated neutrophils and macrophages is the 

production of a vast spectrum of endogenous reactive oxygen (ROS) and nitrogen (RNS) species 10 in 

a process termed “respiratory burst” 11 (see below). However, ROS, as well as the more stable and 

less reactive by-product of ROS production, hydrogen-peroxide (H2O2), are more than toxic products 

of respiratory burst, they are also effectors for a plethora of signalling pathways inducing innate and 

adaptive immune cell recruitment, proliferation, tissue healing, cell survival or apoptosis 12-14. As a 

secondary messenger ROS are essential contributors to the signalling cascade of receptors (e.g. 

members of the Toll-like [TLRs] or Nucleotide-binding oligomerisation domain [NOD]-like receptors 

[NLRs]) that induce pro-inflammatory innate immune response via an array of functionally diverse 

down-stream signalling elements (e.g. NFB, STAT1, IRF3 and caspase-1 activation) [2] 15-20. 

Inflammation is self-limiting and normally subsides following the removal of the insulting particles 

and completion of tissue repair. However, if the loss of tissue homeostasis is prolonged it may 

ultimately lead to chronic inflammation with increased recruitment of macrophages, enhanced 

senescence and suspended apoptosis, unregulated growth and tissue repair. The overwhelming 

persisting ROS production by inflammatory cells damages macromolecules (DNA, as well as RNA, 

lipids, carbohydrates and proteins) of the host cells 21,22 inducing genomic instability and tipping the 

balance of the antitumour activity of ROS to a tumour promoting one. Chronic inflammation is 

viewed as a susceptibility factor for many chronic diseases including asthma, cardiovascular, 

autoimmune, neurodegenerative and age-related disorders 23-30 and cancer 31-33.Oxidative burst-
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produced inflammatory ROS damage both nuclear (nuDNA) and mitochondrial (mtDNA) DNA causing 

genome instability and loss of homeostasis. Mammalian cells and the immune system have evolved 

an arsenal of receptors recognising molecules of pathogen- or host-origin, including DNA. Damaged 

host DNA, similar to bacterial DNA, signals danger and induces a wealth of signalling pathways to 

induce DNA damage response, DNA repair, inflammatory and immune response or cell death to 

restore tissue homeostasis and maintain host genomic integrity and survival. 

1.1 Generation of inflammation-induced ROS and RNS  

The chemical components of inflammatory response are ROS and RNS, molecules with free radicals 

(containing one unpaired electron) or other non-radical oxidants generated from oxygen or nitrogen 

14. Oxidative stress mediating ROS can typically arise from exogenous sources such as UVA or  -

irradiation, drugs, heavy metals 34-36, or from endogenous sources  e.g. oxidative metabolism, 

apoptosis, bystander cells or enzymatic activity 31,37-39. Extracellular ROS and RNS are produced by 

migrating neutrophils and macrophages at the site of injury or inflammation, while the intracellular 

sources are mostly biochemical processes through enzymatic reactions or autooxidation related to 

oxidative metabolism 40. An array of oxidants is generated by neutrophils and macrophages at the 

site of infection including superoxide (O2*
-), H2O2, hypochlorous acid (HOCl), nitric oxide (NO*) and 

nitrogen dioxide radicals (NO2*). These reactive species mostly arise from the enzymatic action of 

NADPH oxidases (NOXs), SOD, MPO and nitric oxide synthase (NOS) or non-enzymatic homolytic 

scissions, respectively.  

Upon activation of neutrophils and macrophages, membrane bound NADPH oxidases (NOXs) are 

assembled in the phagosomal, endosomal or cellular membrane (NOX2) [3] 41, or in the 

mitochondrial membrane (Complex I and III in the mitochondrial respiratory chain). NOXs catalyse 

the conversion of NADPH to NADP+ while leaking one electron that can be captured by dissolved O2 

to produce O2*
-, which is subsequently converted to additional anti-microbial and cytotoxic ROS. The 

O2*
- is released to the cytosol or the extracellular milieu where it is protonated to H2O2 and O2 by 
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superoxide dismutase (SOD) 42,43. H2O2 diffuses within the cell and through the aquaporins crosses 

the membrane into the extracellular space. Outside the cells it can travel long distances, which 

makes it a distant effector of phagocytic cellular killing 44. Hence, it is also recognised as a distant 

effector of phagocytes when transformed to more potent oxidising radicals by myeloperoxidase 

(MPO) 45,46. H2O2 is the substrate of MPO producing HOCl in neutrophils [4] 47, or HOBr in eosinophils 

[5]. H2O2 is highly stable and less electrophilic in vivo, however, is also a source of more reactive 

hydroxyl radicals (OH*) when it is reduced in the Fenton reaction by ferrous or copper ions 14,48,49. 

The enzyme responsible for NO* production in macrophages and less abundantly in neutrophils is 

inducible nitric oxide synthase (iNOS) or i-mtNOS in the mitochondria [6] 50. Electron leaking from 

NADPH via NOS-mediated oxidation of L-arginine can also produce O2*
-. The reaction of NO* with 

O2*
- generates peroxynitrite (ONOO-). ONOO- is highly unstable and quickly autooxidates to nitrous 

anhydrate (N2O3) or converted to OH* and NO2*. NO2* and carbonate radical anion (CO3*
-) are the 

by-products of the reaction of ONOO- with CO2 followed by homolysis. Neutrophils also contribute to 

the NO2* pool via MPO-mediated reduction of nitrite (NO2-) to NO2* [7] 46,51,52. 

Under non-inflammatory conditions, low level ROS are intracellular signal transducers contributing 

to physiological activation of adaptive mechanisms maintaining cellular homeostasis. Low 

concentration of NO* has been observed to promote cell survival and proliferation, while non-

physiological levels can induce DNA damage, cell cycle arrest and apoptosis 53. Controlling non-

activated cellular ROS levels within physiological range is the delicate balance of the catalytic and 

scavenger action of a wealth of enzymatic and non-enzymatic (small molecule antioxidants) 

reactions. Enzymes catalysing ROS metabolism include SOD, catalases, glutathione peroxydases, and 

thioredoxin, glutathione, methionine sulphoxide or peroxinitrite reductases 54-57, while ascorbate, 

oxaloacetate and pyruvate are a few examples of small molecule antioxidants 13,58,59. 
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1.2 Mutator ROS: ROS-induced DNA damage and repair  

The spectrum of genotoxic effects of ROS and RNS are ranging from nucleobase modification such as 

oxidation (OH*, HOCl), halogenation (HOCl), alkylation, methylation, nitration (N2O3, ONOO-), 

depurination and deamination, and abasic sites that can be present as isolated tandem or clustered 

lesions. In addition to this, more complex modifications of the DNA structure can also be catalysed 

by these chemical mediators of inflammation (inter- and intra-strand crosslinks, DNA-protein 

crosslinks, single strand breaks (SSB) and double strand breaks (DSB) [8] 60,60-62. In addition, ROS can 

inhibit key proteins of the DNA repair machinery 63. The balance between ROS induced DNA damage 

and repair is responsible for the relatively low level of lesions in normal cells and tissues [9]. 

However, this rate of damage increases with age, chronic diseases or cancer [10] 64,65.  

Isolated oxidative DNA lesions and abasic sites are repaired with relatively high efficiency via base 

excision repair (BER) 66-68, while nucleotide excision repair (NER) removes intrastrand crosslinks 69 

and bulky nucleotide lesions. Mismatched bases and small insertion/deletion loops are repaired by 

mismatch repair (MMR). The pathway choice to repair DSBs depends on the cell cycle state and can 

utilise homologous recombination (HR) or non-homologous end joining (NHEJ). Furthermore, DSBs 

(induced by e.g. -irradiation) are repaired by NHEJ 70,71 and replication-induced DSBs are repaired by 

HR [11] 72. 

1.2.1. Isolated single nucleobase lesions, clustered DNA damage, SSB and DSB 

Inflammation-mediated halogenisation by HOCl or HOBr 73 and nitration by N2O3 
74-79 can damage all 

four nucleotides in vivo giving rise to an abundant variety of nucleobase lesions. From all four 

canonical nucleotides, the most frequently identified oxidised guanine products in vivo are 8-oxodG  

and FapydG (2,6-diamino-4-hydroxy-5-formamidopyrimidine), while the most abundant oxidised 

pyrimidine lesions are thymine glycol (Tg; 5-,6-dihydroxy-5,6dihidrothymidine) and cytosine glycol 

(5-,6-dihydroxy-5,6dihidrocytosine) 1,60,61,80,81. In addition to the above, OH*-mediated hydrolysis of 
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the deoxyribosyl moiety can result in SSBs 82. Abasic sites, inter- and intrastrand G-G/G-A crosslinks 

can arise from nitrosation of purines 74; while oxidised guanines can lead to 8-oxodG:dC or 8-

oxodG:dA pairing, the latter leading to G→T transversions 83 [8].  

Apart from direct nucleotide lesions generated by inflammatory ROS, secondary mutagenic radicals 

(aldehydes, epoxides, lipid hydroperoxides) can also arise from ROS-mediated oxidation of other 

cellular macromolecules and can induce further DNA lesions 84,85. Clustered DNA lesions or non-DSB 

clusters are two or more DNA lesions within one helical DNA turn, which can be either on one strand 

or on both strands of the DNA helix (tandem or bistranded, respectively). Clustered DNA lesions are 

almost exclusively generated by ionizing radiation rather than inflammatory ROS, however, it is also 

reported that single pyrimidine radicals generated by reaction with OH* can attack the 

complementary or neighbouring purine bases 86,87 [8]. 

Typically, non-ionising radiation mediated oxidative stress induces SSBs, while DSBs arise as 

secondary lesions. Incomplete repair of a single lesion by BER (typically a nucleobase lesion or an 

abasic site generated by the AP endonuclease or glycosylase and more frequently by the long-patch 

BER) or by the NER pathways can induce SSBs and two adjacent SSBs (essentially arising from the 

repair of two bistranded clustered lesion) can lead to a DSB 88. When the replication fork collides 

with unrepaired abasic sites or single strand breaks it can results in collapsed replication forks and 

DSBs (replication induced DSB) 72,89. 

1.2.2. mtDNA damage 

The circular mtDNA constitutes 1% of total cellular DNA, is of symbiotic bacterial origin, and 

compared to nuDNA has a very different molecular organisation and regulation. mtDNA has no 

histones and the methylation of CpG repeat motifs is under-represented, therefore it is particularly 

vulnerable to damage by endogenous ROS generated by the oxidative electron transport chain 

during ATP synthesis 90-92. The major nascent mitochondrial ROS molecule is O2*
-, which is quickly 

dismuted to H2O2. Under physiological conditions O2*
- and H2O2 are considered less reactive to 
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mtDNA directly than the OH* radicals generated from H2O2 in the Fenton reaction 93,94. Due to the 

abundance of the GC-rich repeats e.g. in the ribosomal genes, the most frequent oxidative DNA 

adducts are 8-oxodG 95, however, thymine glycol is also frequent 96,97. Additional mtDNA lesions 

include abasic sites (from OH*-mediated hydrolysis), cytosine alkylation by S-adenosylmethionine 

(SAM) 95, replication-mediated mismatch of modified nucleotides 98 and repair- or replication-

induced SSBs 99 or DSBs 100 [12]. Abundant expression of mitochondrial NO* and secondary radicals 

are also responsible for mtDNA damage.  

The most active pathway in the mitochondria to repair oxidative mtDNA lesions is BER 101. SSBs are 

repaired by the joined BER/SSBR (single strand break repair) pathway 102 while DSBs are by HR, albeit 

at low frequency 103,104, or with NHEJ [13]. mtDNA degradation is another pathway to eliminate 

unrepaired oxidative DNA lesions 93, which is supported by the abundant cellular copy number of 

mtDNA and observations of cellular tolerance to extensive mtDNA loss in vitro 105 106 and in vivo 107 

108,109 [13]. 

2. Oxidised DNA as a pro-inflammatory signal 

Inflammation and ROS-mediated damage modulates the DNA damage response signalling and repair 

pathways resulting in an increase in expression of genes involved in repair and the inflammatory 

response 110. On the other hand, ROS can directly damage or inhibit proteins of these processes as 

well 111,112. In chronic inflammation, persistently high ROS level, reduced repair efficiency and 

dysfunctional mitochondrial respiration can lead to the accumulation of DNA damage 113. If oxidative 

DNA lesions are unrepairable or repair is incomplete, prolonged DNA damage induces permanent 

cell-cycle arrest, senescence, eventually apoptosis or necrosis, during which DNA enters the 

degradation pathway. Under normal physiological circumstances DNA is sequestered in the nucleus 

and the mitochondria away from immune surveillance. Upon apoptosis [14,15] 114 necrosis or tissue 

damage fragmented cellular DNA can enter the vascular circulation and the intracellular space, 
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however, it is not recognised as antigenic for the unchallenged immune system. Failed clearance of 

apoptotic debris, excess circulating extracellular DNA (also known as cell free DNA; ecDNA/cfDNA) 

from necrosis or tissue damage, and increased level of DNA modifications are stimuli for immune 

response and inflammatory pathways, and pathological processes such as atherosclerosis [16], deep 

vein thrombosis [17], thrombotic microangiopathies [18], primary Sjögren’s syndrome or systemic 

lupus erythematosus (SLE) [19] 115. DNA is present in the extracellular milieu (ecDNA) and the 

vascular system of healthy as well as diseased individuals. Increase in its concentration and the level 

of oxidative damage correlates with tissue damage and disease severity. It is important to note that 

normal physiological processes such as ageing, stress and exercise can also lead to increased ecDNA 

levels [20] 116,117. 

There are two sources of circulating ecDNA: 1) virtosomes; newly synthesised 

DNA/RNA/lipopolysaccharide complexes from living cells [21] or 2) cell death; apoptosis, necrosis 

and oncosis [15] 118.  Circulating ecDNA can be taken up by neighbouring or distant cells and could 

act as a messenger to exert biological bystander effect [22] 119.   

The 8-oxodG content of genomic DNA (gDNA) in necrotic cells is enriched and its concentration in 

the ecDNA pool is elevated by oxidative stress or disease [23] 120. Serum from patients with chronic 

diseases contains high levels of cell free oxidamaged DNA [24], while mice treated with antigenic 

oxidised gDNA (gDNAox) show induced inflammation and high anti-DNAox antibody levels [25]. 

Furthermore, similar to oxidised extracellular DNA (ecDNAox) released from damaged cultured cells 

[26] 120, gDNAox generated in vitro [22] is a stress signal and can induce ROS production, causes 

decreased expression, nuclear localisation and transcription of NFB in cultured fibroblasts; DNA 

damage, apoptosis or adaptive response in cells at sites far from the initial oxidative stress. This 

suggests that gDNAox is a potential mediator of bystander effect that is observed following damage 

from both physical (irradiation) and chemical (ROS) sources [22,23,26] 120,121. Low-LET radiation also 

induces ROS-mediated oxidative damage and inflammation in normal non-irradiated tissues [27] 
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122,123.  Naïve cells exposed to either ecDNA from irradiated cells or gDNA extracted from H2O2 

stressed cells show spatial and structural rearrangement of chromosomes within the nucleus, 

facilitating repair and transcription of ribosomal genes and genes involved in repair- and signalling 

processes [28].  

2.2. Oxidised mtDNA as a stress signal 

Circulating mtDNA is passively released to the extracellular space together with other mitochondrial 

macromolecules (e.g. lipids, formyl-peptides) by direct injury to tissue or programmed cell death 

mechanisms 124,125, and is present in measurable amounts with higher 8-oxodG content relative to 

nuDNA [23,29]. The importance of mtDNA in host defence is demonstrated by its active release via 

another immune response mechanism, called neutrophil extracellular traps (NETs): mtDNA and ROS 

are launched by activated eosinophils [30] 126 and neutrophils [31] 127,128 in response to bacterial 

lipopolysacharide  induced IFN- and IL-5 129.  

The immune response to mitochondrial DAMP (e.g.  mtDNA and ROS) is similar to PAMP induced 

PRR signalling and inflammatory immune response.  One might surmise that despite the two billion 

year old symbiosis, mitochondria still possess immunogenic properties reminiscent of bacteria, and 

together with ROS these mitochondrial signals are an additional level in host immune defence (stress 

induced adaptive response) to maintain or restore homeostasis or if it is beyond that induce cell 

death. This may not be too far-fetched from the bacterial SOS response to ROS-induced damage 

from host cells. Invading bacteria activate pathogen recognition receptors, incite chronic 

inflammation and host DNA damage to hijack host DNA repair processes in order to repair their own 

DNA and gain bacterial resistance and survival.  However, prolonged inflammation inhibits DNA 

repair, eventually leading to cancer. Helicobacter pylori infection downregulates MMR and BER and 

consequently induces carcinogenesis [32] 130-132, especially if H. pylori infection is associated with 

underlying metabolic syndromes such as diabetes or obesity [33] 133. Exposure of cultured MEFs and 

HCT116 cells to oxidative stress showes much higher frequency of SSBs, but only a marginal increase 
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of 8-oxodG load in mtDNA [34]. On the other hand 8-oxodG level is increased in the fragmented 

mtDNA population in tissues [23,29], which implicates that if repair is overwhelmed mtDNA 

degradation is a potential pathway to maintain mitochondrial genomic integrity by clearing out 

damaged copies. Released extracellular or intracellular oxidamaged mtDNA (mtDNAox) fragments 

than act as mediators of immune response via DAMP activated TLR9 receptor signalling (see below). 

A large body of in vitro and in vivo data supports that 8-oxodG DNA fragments with high GC content 

promote local as well as distant inflammation. Exposure of cultured murine macrophages to such 

DNA induces TNF secretion [35], while bystander effect has been demonstrated in a murine model: 

when the liver was injected with isolated mtDNA it also induced lung inflammation [36]. mtDNA 

binding to TLR9, subsequent p38MAPK phosphorylation and IL-8 secretion are diminished in vivo in 

cultured neutrophils that are incubated with oligonucleotides complementary to CpG repeats of 

mtDNA  [36]. Bacterial-like non-methylated CpG rich mtDNA, therefore, can influence inflammation 

that is found to  increase lung injury and arthritis in murine models in vivo, which is further 

enhanced by oxidative mtDNA damage [36,37]. Furthermore, cell free oxidised mtDNA is found in 

arthritic joint fluids [37] 134. 

Oxidative stress induces elevated mitochondrial respiration and translocation of thioredoxin-

interacting protein (TXNIP) from the nucleus to the mitochondria [38]. In the mitochondria TXNIP 

inhibits the antioxidant thioredoxin 2 (TRX2) [39], which leads to mtDNA damage, elevated ATP 

synthesis, amplified ROS production and dysfunctional mitochondria to culminate in inflammation or 

cell death 135-137 [40]. A genuine cellular response to eliminate dysfunctional mitochondria is 

mitophagy (mitochondrial autophagy) 138, which blocks NLRP3 inflammasome activation and the 

inflammatory response [2,41]. NLRP3 (NLR family, pyrin domain containing 3) is a molecular monitor 

of the metabolic status of mitochondria and the cytosol for DAMPs and PAMPs [42] 20 e.g. various 

radiation-generated ROS [43], asbestos and silica [44], -amyloid plaques [45], extracellular ATP [46], 

oxidised mtDNA [47] and double-stranded RNA [48]. Depletion of mtDNA also inhibits 

inflammasome activation [41]. In the absence of mitophagy, augmented ROS can activate the 
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opening of mitochondrial permeability transition pores (mPTP) and the release of cytochrome c, ATP 

and Ca2+ to the cytosol. This in turn induces the intrinsic (mitochondrial) apoptotic pathway through 

the activation of the apoptosome 138,139 and a subsequent release of ROS, TXNIP, non-oxidised and 8-

oxodG rich oxidised mtDNA to the cytosol, which then directly bind to NLRP3 [2,41,47] 18,140. Priming 

of the NLRP3 inflammasome requires a pro-inflammatory signal likely provided by ROS 141. 

Oxidamaged mtDNA binds to the pyrine domain of NLRP3, which then interacts with the cytosolic 

apoptosis-associated spec-like protein (ASC) component and induces the assembly and activation of 

the NLRP3-ASC adaptor-procaspase-1 complex (inflammasome). The active NLRP3 inflammasome 

relocates from the ER to the perinuclear space and binds to the mitochondrial outer membranes via 

the mitochondria-associated adaptor molecule, MAVS (mitochondrial antiviral signalling) [2] 142. 

Mitochondrial membrane-bound NLRP3 instigates inflammatory caspase-1 autocatalysis 143, which 

interlinks pathways of cell death and the inflammatory response 139 (Fig. 1A). Active caspase-1 

enhances proteolytic cleavage and secretion of pro-inflammatory cytokines (IL-1 IL-33 and IL-18) 

[42] 144,145, which in turn result in the expression of TNF and IFN (α/β and  instigating further 

immune cell recruitment. These pro-inflammatory cytokines activate the IL-1 or TNF receptors, and 

downstream NFB signalling 146. Activated caspase-1 also instigates the pyroptosis pathway: an 

inflammatory form of apoptosis characterised by cellular ‘rapture’ that releases its pro-inflammatory 

content, including oxidised DNA fragments 124,147. NLRs are also involved in and regulate mtDNA-

mediated inflammation and apoptosis in concert with TLR9 [47,49].  

Recent in vivo and in vitro studies show that intact or oxidised mtDNA is a danger signal [1] 129,148, 

and induces pro-inflammatory cytokine (TNF IL-6 and IL-10) expression. This in turn promotes 

recruitment of activated macrophages, age related low level inflammation [20], or sepsis-like non 

infection associated, sterile SIRS (systemic inflammatory response syndrome) via the DAMP 

activated TLR9/NFB pathway following trauma and lung injury [50]. However, other DNA sensors 

are likely involved in mtDNA and ROS mediated damage signalling [26] 120 as well.  
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In vivo and in vitro studies show that the effect of mtDNA as a damage signal is much more adverse 

than that of nuDNA [1] 148,149. As protein coding in mtDNA is restricted to elements of the electron 

transport chain, many functions (replication, repair and transcription) in mitochondria rely on 

products encoded in the nuclei that are transported to the mitochondria 150,151. As a consequence, 

nuDNA damage is also an important contributing factor to dysfunctional mitochondria 152. 

3. Transduction of damaged DNA induced stress signal  

Several different proteins have been identified to date (including MRE11 153, PARP-1, Ku70, DNA-PK 

154 IFI16 155, DDX41 156, RNA Pol-III 157, cGAS 158, DAI, HMGB1, AIM2 159, RIG-1, TLR9 and STING 160-162) 

[51] 163, which bind pathogen- or host derived DNA (originating from either the mitochondria or 

nuclei in response to cellular stress) and initiate defensive immune-response via NLRs, TLRs or RLRs 

(retinoic acid inducible gene-1 [RIG-1]-like receptors) mostly in a cell-type specific fashion. These 

sensors bind dsDNA in a non-differentiating manner only showing some preferences to non-oxidised 

or 8-oxodG rich DNA structures [47]. Further investigations are required to identify a specific DNA 

structure for pathogen derived DNA PAMPs 164 or conditions and conformations (emerged from its 

processing) that designate host-derived DNA 165 as DAMPs. 

3.1 TLR9 

Toll-like receptor 9 (TLR9) is present in cellular, nuclear and phagosomal membranes of innate 

immune cells and its expression is elevated during inflammation and starvation [22]. Non-

methylated bacterial CpG-DNA from phagocytosis and mtDNA with the same properties are ligand to 

TLR9 via the extracellular high mobility group protein-1 (HMGB1). 8-oxodG enriched ecDNAox from 

tissue damage, cell death (pyroptosis) or mitochondrial release as DAMPs are preferred TLR9 ligands 

[52] 166,167, while extracellular histones are direct TLR9 ligands [53]. Ligand activation followed by the 

binding of the signalling adaptor MYD88 to TLR9 168,169 induces TLR9 translocation from the ER to the 

endosomes [54]. MYD88 is also a signalling adaptor of the cytokine receptor IL-1R [55] linking the 
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TLR-dependent and TLR-independent inflammatory response pathways. The downstream effect of 

TLR9/MYD88 stimulation leads to IB degradation and nuclear translocation of the NFB 

transcription factor and the simultaneous phosphorylation of p38MAPK. This subsequently induces 

the synthesis and release of IFN- and TNF. NFB, in combination with other transcription factors 

e.g. AP-1, IRFs and CREB, induces the expression of proteins like additional pro-inflammatory 

cytokines (IL-1 IL-6, IL-10, IL-18), NOX2, NLRP3, TRX2, TRX3 to regulate innate (monocyte 

recruitment) and adaptive (T- and B cell activation) immune response, local inflammation [36,50] 

170,171, inflammation in distant cells or organs (bystander effect) [36] and senescence, as well as 

proliferation, tissue repair and survival [49] 172-176 (Fig. 1B). 

Accumulation of non-degraded mtDNA leaking from overwhelmed autophagy induces TLR9 

expression and TLR9-mediated inflammation [56]. Similarly, ecDNA from cancer patients induces 

TLR9 expression in mesenchymal stem cells [26], while TLR9 inhibitors decrease damaged ecDNA 

induced TLR9-mediated DNA damage response (chromosome remodelling, nuclear rearrangement, 

rRNA expression) in the bystander cells [22]. 

3.2 AIM2 

Similar to phagolysosomal pathogen entry to the cytosol, intracellular dsDNA and mtDNA can bind 

and activate another type of inflammasome, AIM2 (Absent in melanoma-2) and induce caspase-1 

mediated activation and secretion of IL-1 and IL-18 in addition to caspase-1 induced pyroptosis [57] 

177,178 (Fig. 1A). Rathinam and co-workers also showed that cytosolic dsDNA induces type I IFN and 

AIM2 expression. This suggests that oxidised ecDNA that escapes degradation following entry into 

the cell via phagosomes can induce cell death and inflammation. However, in macrophages, non-

oxidised DNA preferentially activates AIM2 [57], while oxidised mtDNA induces NLRP3 

inflammasome assembly and both induce IL-1 secretion [47]. 
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3.3 STING 

The presence of 8-oxodG lesions alleviates the susceptibility of DNA to degradation by the TREX1 

exonuclease [58], and as a consequence it accumulates to induce immune response. Elevated ecDNA 

level from increased apoptosis or NETs from dying neutrophils with defect in lysosomal DNase 

activity are characteristic for SLE [59].  Elevated ROS production induces NET formation 179, hence 

ecDNA in SLE accumulates 8-oxodG lesions that are sensed by STING (stimulator of IFN genes) and 

induces IRF signalling [58]. Following dsDNA stimuli STING relocates from the ER membrane to 

perinuclear endosomal compartments and forms a complex with TANK-binding kinase 1 (TBK1) [60] 

(Fig. 1C). The STING-TBK1 complex activates IKK to induce the NFB or IRF3 pathways in a TLR-

independent manner and induces Type I IFN expression and release, thus overstimulation of anti-

viral and inflammatory innate immune responses via membrane IFN-receptor (IFNAR) in 

neighbouring cells and lymphocytes. Type I IFN-mediated receptor activation initiates the Janus 

kinase (JAK) signal transducer and the STAT (signal transducer and activator of transcription) 

pathway stimulating the expression of different antiviral genes 180,181. 

dsDNA also activates translocation of STING to the apoptosome where it associates with TBK1 and 

interacts with autophagy-related proteins (Atg-9a) promoting autophagy [61]. Although STING-

dependent IFN- production is proven to be stimulated by synthetic poly(dG:dC) and dsDNA in 

MEFs, binding and colocalisation of STING to DNA were not shown suggesting that STING is not a 

DNA binding protein [60]. However, Abe and co-workers shown low affinity dsDNA binding to STING 

homodimers [62]. Upstream dsDNA binding molecules that induce the STING-TBK1-IRF3 pathway are 

IFN-inducible protein 16 (IFI16) [63] and DEAD-box polypeptide 41 (DDX41) [64], in addition to the 

recently identified cyclic GMP-AMP (cGAMP) synthase (cGAS) (Fig. 1C). cGAS binds and activates 

STING via the secondary messenger cGAMP and triggers NFB and IFN response [65] 182,183. The 

bacterial cyclic di-adenylate monophosphate (c-di-AMP) and cyclic di-guanylate monophosphate (c-

di-GMP) are directly sensed by STING [66] 184,185 as well as via DDX41 [67]. The reduced IFN- level in 
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Sting-/- MEFs to synthetic poly(dA:dT) dsDNA was accounted for an additional Type I IFN response 

that is independent of both TLR and STING, and mediated by the dsDNA induced innate immune 

signalling receptor  RIG-1 [60].  RIG-1, a member of the RLR family, is a dsRNA receptor that also 

triggers antiviral response to dsDNA 186-188. 

3.4. DNA damage sensor and repair proteins in inflammatory immune 

response 

Damage to the DNA induces a cascade of actions commonly termed the DNA damage response 

(DDR). DDR includes the activation of different transcription programs, cell cycle checkpoints to 

induce transient or permanent cell cycle arrest (senescence), activation of specific repair pathways 

and apoptosis if repair fails. While the dsDNA-mediated immune-response pathways have been well 

characterised, there are still new alliances being discovered between DNA damage sensors of the 

DNA repair pathways and DNA receptors of the immune system. 

3.4.1. MRE11 

The MRN complex, consisting of MRE11 (Meiotic recombination 11 homolog A), RAD50 and NBS1 

(Nijmegen breakage syndrome 1), is one of the first proteins to sense and bind broken double-

stranded DNA ends. MRE11 possesses 3’→5’ exonuclease activity and contributes to the resection of 

the broken end thus facilitates and regulates HR or NHEJ depending on cell cycle 71,189. The complex 

controls DDR via the CDK phosporylation-dependent binding of CtIP to NBS1 and facilitating the ATM 

dependent phosphorylation of CtIP 190-192.  Once activated, CtIP promotes end resection by 

stimulating the endonuclease activity of MRE11 in an S-phase dependent manner [68] (Fig. 1D). In 

addition to IFI16 and DDX41 dsDNA binding proteins, MRE11 was also implicated in stimulating 

dsDNA induced type I IFN mediated inflammatory signalling via the STING-dependent pathway [69]. 

It has been shown in MEFs and ataxia telangiectasia-like disorder (ATLD) cells treated with non-AT-

rich IFN stimulating DNA sequences, that MRE11 in complex with RAD50 but independent from 
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NBS1, induces IFN-expression, and activation and translocation of STING. MRE11-mediated STING 

activation is not induced by pathogen-derived DNA suggesting that MRE11 rather functions in host 

damage response [69] (Fig. 1C). ATM activation promoted by MRE11 ultimately induces the p53 and 

p21 checkpoint proteins and cell cycle arrest, indicating a role of MRE11 in the control of p53 

dependent apoptosis and cell-cycle regulation, and a direct link between DDR and the immune 

response pathways 193. While p53 is considered to be a tumour suppressor, when overexpressed or 

in constant activation it can promote pro-tumorigenic inflammation 194. Yan et al reported that in rat 

liver constant genotoxic stress-induced persistent DNA damage sustained elevated p53 expression 

and subsequently increased HMGB1 secretion, pro-tumorigenic hepatic inflammation and apoptotic 

hepatic injury in wild type rats, which was less severe in heterozygous p53+/- rats [70] 195. 

Additionally, ATM also induces a pro-survival response via activated NFB, which in turn accelerates 

DNA end resection, promotes HR, and induces BRCA2 and ATM transcription [71] (Fig. 1D). 

3.4.2. PARP-1 

Persistent unrepaired DNA lesions can cause replication fork stalling. A stalled replication fork may 

collapse if it is processed by endonucleases like MUS81, or if a progressing fork encounters an SSB it 

is converted to a DSB 196. Stalled replication forks can reverse to aid template switching, replication 

past a lesion and replication restart. Collapsed forks can be re-built and replication reinstated 

through the homologous recombination repair pathway 197,198. This process is initiated with end-

resection that is catalysed by the MRN complex. Stalled replication forks, SSBs, DSBs, DNA cross over 

or stem loop/cruciform structures are sensed by the DNA binding and scaffold protein poly-ADP-

ribose polymerase (PARP-1) [72]. PARP-1 has a bipolar effect in oxidative stress-induced DDR: DNA 

repair and survival or necrotic cell death. PARP-1 directly binds and recruits several proteins of the 

major repair pathways (MRE11, NBS1 199,200, Ku70 201, DNA-PK 202, ATM 203) and regulates chromatin 

remodelling, DNA replication and repair, and transcriptional activity of inflammatory factors 204-206 

(Fig. 1F). PARP-1 is also involved in caspase-1 mediated [73] or caspase-independent [74] apoptosis 
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and autophagy 207 [75]. PARP-1 catalyses the addition of poly (ADP-ribose) (PAR) chains to its 

substrate proteins and facilitates DNA repair. Persistent DNA damage induced PARP-1 over-

activation results in the depletion of cellular NAD+. NAD+ re-synthesis leads to the depletion of 

cellular ATP reserves, impaired energy metabolism, cellular and mitochondrial dysfunction and 

necrosis; known as PARP-suicide [76]. PARP-1 is implicated in many inflammatory diseases including 

diabetes 208, asthma 209,210, atherosclerosis 211 and hepatic fibrosis 212 [77]. PARP-1 directly interacts 

and activates (PARylation) p53, and NFB [78] 213,214, while interaction with p21 inhibits PARylation 

activity [72] 215. In addition, PARP-1 was shown to regulate the phosphorylation of ERK1/2, 

p38MAPK, and c-Jun [78]. Similar to senescence, DNA damage induced PARP-1 over-activation 

generates an inflammatory feedback loop. PARP-1 binding to NFB induces NFB-mediated 

inflammatory immune-response by iNOS and expression of pro-inflammatory cytokines (e.g. IL-1, 

TNF leading to inflammatory ROS production and persistent DNA damage [72] 216-219. 

3.4.3. Ku70 and DNA-PK 

DSB is sensed by Ku70 to facilitate the Ku-dependent non-homologous DNA end-joining pathway 

(NHEJ), the major cell-cycle independent repair pathway of double stranded DNA breaks 70. Ku70 is 

also implicated in the triggering of inflammatory signalling by inducing IRF1 and IRF7-mediated Type 

III IFN expression (IFN-1) [79] (Fig. 1E). 

DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is a member of the phosphatidyl-inositol 

(PI3) kinase family (of which ATM and ATR are also members). DNA-PKcs is activated upon binding to 

the Ku70/Ku80 regulatory subunit bound to dsDNA ends. DNA-PK plays a central role in DNA repair 

(NHEJ) and in V(D)J recombination of programmed DNA rearrangements in lymphocyte 

differentiation in the nucleus 70,220,221, but it also plays a role in the cytoplasm [80] 222,223.  

Macrophages expressing catalytic dead DNA-PKcs or siRNA knock down of DNA-PKcs showed that its 

activity is essential for transfected synthetic CpG oligonucleotide -induced expression of the anti-

inflammatory cytokine IL-10 while DNA-PKcs activity inhibits the expression of the inflammatory 
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cytokine IL-12p70. It correlates with  previous findings that unmethylated CpG oligonucleotides 

induce IL-6, IL-10, IL-12, type I IFN and TNFin dendritic cells (DC), macrophages and B cells [81] 224. 

DNA-PKcs-mediated cytosolic binding of CpG oligonucleotides is a pre-requisite for the regulation of 

IL-12p70 and IL-10 expression through the DNA-PKcs-ERK mediated pathway. Interestingly, the CpG 

oligonucleotide-liposome complex also induces IL-12p70 [80]. Nevertheless, IL-12p70 induction 

could also be a response of TLR4 receptor activation that is probably induced by the liposome itself.  

A recently described cytoplasmic function of DNA-PK is the cytoplasmic DNA-mediated activation of 

IRF-3 in vitro and in vivo via STING-TBK1 stimulation (Fig. 1C). DNA-PKcs directly binds cytoplasmic 

DNA, which is enhanced by Ku and DNA-PKcs catalytic activity is not required for IRF-3 signalling [82]. 

3.4.4. HMGB1 

HMGB1 (also called alarmin) is a chromosomal scaffold protein with diverse nuclear, cytosolic and 

extracellular functions. In the nucleus it facilitates chromatin assembly, binding of protein-

complexes, and regulates transcription 225, replication 226, chromatin remodelling upon DNA damage 

227,228 and DNA repair. HMGB1 can bind to different DNA structures in vivo and promote the NER 229, 

BER 230,231 and MMR 232 pathways. HMGB1 enhances the binding and the activity of Ku and DNA-PK 

at the DSB ends in NHEJ 233 and is implicated in V(D)J recombination 234 [83]. In addition to 

recognising specific DNA structures: supercoiled, hemicatenated, single stranded, B- and Z-DNA, 

four-way junction, triplex DNA, looped structures and DNA mini circles [83] 166,235, HMGB1 has strong 

binding affinity to damaged DNA sequences like UV treated oxidised DNA [84] and to CpG DNA. 

HMGB1 promotes TLR9 translocation to the endosomes and the HMGB1-CpG DNA complex induces 

TLR9 mediated IL-6, IL-12 and TNFα secretion in macrophages and DCs [85] (Fig. 1B). In response to 

starvation induced mitochondrial ROS mediated oxidative stress, HMGB1 actively translocates to the 

cytosol to inhibit apoptosis and to promote autophagy and survival. Intriguingly, this process is 

hijacked by tumour cells by overexpressing HMGB1 [86] 236. As an extracellular DAMP, it induces pro-

inflammatory signalling when released by activated immune cells [87] 237,238 or necrotic non-immune 
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cells [88] 239. It acts as a cytokine: stimulates migration of immune cells in complex with CXCL12 [89], 

secretion of pro-inflammatory TNF IL-1 and IL-6 240, and induces secondary delayed inflammatory 

response [90].  HMGB1 signals through the cell surface RAGE receptor on immune and non-immune 

cells to activate NFB  via the Ras-MAPK pathway [91], to promote tumour invasion by activating 

MAP kinases p38MAPK, JNKs and ERK1/2 (p44/42 MAPK) [92], and to induce NET formation via 

TLR4-mediated signalling [93]. Thus, HMGB1 is a contributing factor to many pathogenic conditions 

including sterile inflammations [94], sepsis [95] 241; chronic inflammatory diseases like rheumatoid 

arthritis [96]; autoimmune diseases like SLE [97] and tumour development and survival [98] 236,242. As 

a specific example: in chronic lymphocytic leukemia (CLL) plasma HMGB1 endorses proliferation of 

the nurse-like cells and the tumour via the RAGE-TLR9 pathway [99]. These suggest that in addition 

to its active release by activated innate immune cells to mediate pathogenic PAMP (GpC DNA) 

activated inflammatory immune response, nuclear HMGB-1 maintains DNA repair, genome integrity 

and promotes survival. Once DNA damage becomes prolonged and repair fails DNA-HMGB1 

structures are released by necrosis and as DAMPs induce a second wave of inflammatory response 

that can be hijacked by tumour cells. 

4. Concluding remarks 

The link between DNA mutations, genome instability and tumour development is well established, 

and it is also widely recognised that chronic inflammation is a cancer susceptibility factor. 

Understanding the interplay between DNA damage response pathways and inflammation has 

dominated research in recent years. Our understanding of how the genotoxic effects of 

inflammation induce DNA damage response, and how factors of the DDR pathway and the PRR-

mediated inflammatory immune response processes interlink to maintain homeostasis have 

advanced significantly. It all supports the hypothesis of a global inflammation cascade propelled by 

ROS and DNA damage. Loss of immune homeostasis and prolonged acute inflammation generated 

by different sources (infection, radiation, toxins, autoimmune disease and genetic susceptibility to 
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inflammation, aging, dietary factors and many more) induce ROS production, elevated ROS-

mediated oxidative DNA damage, reduced repair capacity launching more ROS and oxidamaged DNA 

(nuclear and mitochondrial) by death of damaged cells. This in turn induces secondary and 

subsequent inflammation in intact distant bystander cells as stress signals, which accelerates into a 

systemic acute inflammation or cancer. The balance between these counteracting pathways is 

delicate and aim to avoid chronic inflammation, loss of genomic integrity by promoting DNA repair, 

or induce apoptosis to eliminate cells with accumulated unrepaired pro-tumorigenic mutations.  

Amongst many regulatory factors, damaged DNA within the nucleus and the mitochondria, or 

released from dying cells seems to play a central role by signalling danger and influencing repair and 

inflammation-associated pathways. Hence, while developing targeted therapeutic approaches to 

treat inflammation-associated diseases, the complex relationship between DDR and inflammatory 

immune processes has to be taken into consideration. 

5. Acknowledgement 

The authors wish to express their gratitude to Dr Ciaren Graham, Prof. Paul Squires and Dr Endre 

Kiss-Toth for critical reading of the manuscript. Research in our laboratory is supported by the 

Biotechnology and Biological Sciences Research Council (BBSRC) under grant number BB/K019597/1, 

and is gratefully acknowledged. 

Figure legends 

Figure 1. Complex relationship between the inflammatory and DNA damage (DDR) response 

pathways. Genotoxic ROS induced DNA damage is sensed at different levels during inflammation 

and is a contributing factor to the pro- and anti-inflammatory immune response to restore tissue 

homeostasis. The cytosolic dsDNA sensor (A) AIM2 and NLRP3 inflammasomes contribute via ligand 

activated caspase-1 to the inflammatory catabolic NFB pathway by post-translational cytokine 
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activation, or if the damage is greater induce cell death programmes. (B) Other cytosolic DNA 

sensors (IFI16, DDX41, DNA-PK etc.) via activated STING-TBK1 integrate into the cytokine and 

interferon signalling pathways in a TLR- independent manner promoting pro-inflammatory innate 

immune processes. (C) The same response is instigated by dsDNA in different endosomal 

compartments via the membrane bound TLR9 receptor. Nuclear damaged DNA sensors induce the 

DDR response: (D) the MRN complex (MRE11-RAD50-NBS1) through activated ATM and (F) PARP-1 

instigate cell cycle arrest via the p53-p21 axis, DNA repair processes and additional transcriptional 

activation of inflammatory and repair genes (Pro-ILs, Type I IFN, NLRP3, ATM etc.) via NFB or (E) via 

IRF3 transduced from the Ku70/Ku80/DNA-PK complex to promote cell survival or cell death in case 

of persistent damage.  
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