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Abstract Hydrogen sulfide (H,S) has profound biological
effects within living organisms and is now increasingly
being considered alongside other gaseous signalling
molecules, such as nitric oxide (NO) and carbon monoxide
(CO). Conventional use of pharmacological and molecular
approaches has spawned a rapidly growing research field
that has identified H,S as playing a functional role in cell-
signalling and post-translational modifications. Recently, a
number of laboratories have reported the use of siRNA
methodologies and genetic mouse models to mimic the loss
of function of genes involved in the biosynthesis and
degradation of H,S within tissues. Studies utilising these
systems are revealing new insights into the biology of H,S
within the cardiovascular system, inflammatory disease,
and in cell signalling. In light of this work, the current
review will describe recent advances in H,S research made
possible by the use of molecular approaches and genetic
mouse models with perturbed capacities to generate or
detoxify physiological levels of H,S gas within tissues.
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Introduction

Hydrogen sulfide (H,S) has gained acceptance by
researchers, as the third gaseous mediator identified in
mammals alongside nitric oxide (NO) and carbon monox-
ide (CO). Over the past decade, this molecule has been
shown to be synthesised by a range of tissues in which it
functions as a signalling molecule with distinct physio-
logical and biochemical effects [1-3]. To date, the
spectrum of signalling systems identified include, but is not
restricted to, nuclear factor-kappa beta (NF-xB), the
activity of several kinases, including p38 mitogen-activated
protein kinase (p38 MAPK) [4], c-JunNH,-terminal kinase
(JNK) [5], extracellular signal-regulated kinase (ERK) [6],
phosphoinositide 3-kinase-protein kinase B (PI-3K-Akt)
[7], protein kinase C (PKC) [8], nuclear factor erythroid
2-related factor 2 (Nrf-2) [9], pS3 [10], AMP-activated
protein kinase [11], proliferator-activated receptor vy [12],
NAD-dependent deacetylase sirtuin-1 (SIRT1) [13], SIRT3
[14], and mechanistic target of rapamycin (mTOR) [15].
Studies focused on delineating these molecular networks
have revealed H,S to have important roles in cytoprotec-
tion [16-20], inflammation [21-24], vascular function
[25-27], neurological systems [28], tissue repair and
healing [29-34], apoptosis and the cell cycle [35, 36],
mitochondrial function and energy metabolism and bio-
genesis [37-48], obesity [49-53], and in ageing [54-60].
What function H,S which plays in these processes ranges
from its ability to act as an antioxidant during episodes of
elevated free-radical production [61, 62] to direct post-
transcriptional modification of cellular proteins via
S-sulthydration [63, 64]. In practise, the signalling effects
of H,S are more complex due to the fact that this gas
readily interacts with other signalling molecules, such as
reactive oxygen and nitric-oxide species [65-67]. Aside
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from enzymatic routes of synthesis, recent evidence has
also shown indirect or secondary sites of H,S production.
These sites include the endogenous liberation from per-
sulfides and polysulfide species, both endogenous and
dietary derived, along with bacterial sources present within
the gastrointestinal tract [68—79]. How these pools of H,S
are coordinated within localised, as well as distal sites, and
how these systems influence disease pathology and long-
evity in mammals is one of the key questions currently
being explored by researchers in this field.

H,S biosynthesis and catabolism

Biosynthetic and degradative pathways involved in H,S
production and consumption are largely mediated by cys-
tathionine B synthase (CBS, EC 4.2.1.22), cystathionine-y-
lyase (CSE, EC 4.4.1.1), 3-mercaptopyruvate sulfurtrans-
ferase (3-MST, EC 2.8.1.2), ethylmalonic encephalopathy
protein 1 (ETHEIL, EC: 1.13.11.18), mitochondrial sulfide—
quinone oxidoreductase (SQR, EC 1.8.5.4), and cysteine
dioxygenase (CDO, EC: 1.13.11.20) (Fig. 1). Biochemical
and pharmacological aspects relating to these enzymatic
systems have recently been covered in great detail [80, 81]
and will, therefore, only be touched upon herein. More-
over, whilst the roles of ETHEI, SQR, and CDO may not
appear obvious at first sight, their potential influence on
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Fig. 1 Generalised overview of H,S production and degradation
within mammalian tissues. The dietary amino acids, methionine and
cysteine, serve as the primary substrates for the trans-sulfuration
pathway and in the production of H,S. The levels of H,S within cells
and tissues will be governed by the rates of synthesis by the enzymes
cystathionine B synthase (CBS, EC 4.2.1.22), cystathionine-y-lyase
(CSE, EC 4.4.1.1), 3-mercaptopyruvate sulfurtransferase (3-MST, EC
2.8.1.2), versus the rates of oxidation and detoxification by the
enzymes ethylmalonic encephalopathy protein 1 (ETHE1, EC:
1.13.11.18) and sulfur:quinone oxidoreductase (SQR, EC 1.8.5.4).
Alternatively, the levels of the substrate cysteine may be depleted via
the catabolic actions of cysteine dioxygenase (CDO, EC: 1.13.11.20)
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H,S tissue levels, via catabolic effects on either H,S
directly or on the amino-acid cysteine justifies inclusion.
Since the potential importance of these enzymes has, until
now, been largely ignored, we believe that some discussion
is warranted, if only at the very least, to stimulate debate
and hopefully encourage future studies using the available
murine genetic knockout models. Furthermore, the possi-
bility of the existence of polymorphisms linked to genes
encoding H,S detoxification enzymes is intriguing. How
such variants influence tissue H,S turnover rates and
physiological effects remains largely unexplored. Thus, the
expression levels and catabolic effects of each of these
enzymes may well influence exposure levels of cells, tis-
sues, and organs to this biologically active gas. It is for this
reason that these systems will be described across physi-
ologically relevant models, including the mouse, Mus
musculus, and to a lesser extent in Caenorhabditis elegans,
Drosophila melanogaster, and Danio rerio. Collectively,
these models will pave the way to a better understanding of
the biological significance of this gaseous molecule and
could potentially assist in the development of future
pharmacologically active entities. The review will also
address some of the recent findings relating to H,S biology
in which genetic approaches, including gene knockdown
and genetic model systems, have been employed to explore
the functional role of this gas.

Pharmacological approaches to manipulate H,S
levels within biological systems

In general, our current understanding of H,S biology has
arisen from work focused on enzymes of the trans-sulfu-
ration pathway. For detailed coverage of the biochemical
aspects relating to these enzymatic systems, we refer
interested readers elsewhere [82-84]. By and large, the
maintenance of the cellular H,S homeostatic equilibrium is
governed by a small group of enzymes that are involved in
the catabolism of the amino-acid cysteine, namely, CBS,
CSE, and 3-MST. Both CBS and CSE appear to be the
major enzymatic routes for the production of H,S within
biological systems. Tissue specific expression of CBS
predominates in the brain, nervous system, liver, and kid-
ney, while CSE is expressed in the liver and in vascular and
non-vascular smooth muscle. However, recent studies have
reported on the expression of CBS in HUAEC cells, the
uterine artery, mesenteric artery, and carotid body [85].
Furthermore, the expression of CBS in the uterine artery
was found to be stimulated at the hormonal level [86]. This
finding suggests a critical role for H,S within the repro-
ductive tract. 3-MST is localised to mitochondria and
produces H,S in a coupled reaction with the enzyme cys-
teine aminotransferase [87]. Information on the degradative
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and detoxification routes for H,S within biological systems
is less widely reported. What is known is that the degra-
dation or loss of tissue H,S appears to occur via a number
of distinct pathways that likely working in concert. For
example, chemical processes, such as (1) the direct oxi-
dation of H,S to thiosulfate in the presence of O, and
transition metals or (2) via enzymatic processes that
include SQR and ETHEIl systems [88-91]. Functional
roles for the enzymes rhodanese (EC 2.8.1.1) and sulfite
oxidase (EC 1.8.3.1) have also been proposed, yet data are
currently lacking for these detoxification routes [92-95].
For many studies, manipulation of cellular and tissue levels
of H,S is required and historically, this has been achieved
utilising inhibitor and/or donor molecules targeting the H,S
biosynthetic pathway (Fig. 2). The widely used CSE inhi-
bitor, pL-proparylglycine, for example, can increase disease
severity in animal models of colitis [96], myocardial
ischemia—-reperfusion-induced injury [97], and also has
anti-hyperalgesic effects [98] and has reported inflamma-
tory as well as anti-inflammatory effects in rodent models
[21]. These studies indicate that the inhibition of H,S
biosynthetic enzymes, and therefore, the production of H,S
within tissues and cells typically leads to increased disease
severity which effects are reversed by the use of H,S donor
molecules. To date, several pharmacological inhibitors are
now available for use in this field, including hydroxylamine
(HA), trifluoroalanine, aminooxyacetate (AOAA) (for
CBS), and p,L-propargylglycine (PAG) or B-cyanoalanine
(BCA) (for CSE), that have provided a means to
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Fig. 2 Over the last 10 years, a wide range of H,S donor molecules
have been developed to assist in determining the biological effects of
H,S under differing physiological and pathophysiological states.
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manipulate tissue H,S levels [99-103]. Other newer inhi-
bitory molecules with greater specificity and enhanced
potency have also been characterized, but sadly, many of
these are not currently commercially available. For
instance, in the work of Thorson, a marine invertebrate
compound library consisting of 160 characterized marine
natural products and 80 purified synthetic derivatives aided
in the identification of several small molecular weight
inhibitors of CBS with ICs, values below 200 pM (range
83-187 uM) [104, 105]. So far, a number of similar
library-based screening approaches have proven fruitful in
the identification of novel inhibitory molecules targeting
CSE, CBS, and/or both. Indeed, Zhou and colleagues have
utilised a tandem well-plate screening system to assess
potential inhibitory molecules that target CSE and CBS.
This approach involved screening 21599 chemical entities
that lead to the identification of several potent inhibitory
molecules designated NSC111041, NSC67078, and
SP14311008 [106]. Interestingly, NSC111041 and
SP14311008 appear to target these enzymes at sites distal
to the PLP binding site. This finding could perhaps serve to
assist in the development of new classes of inhibitory
molecules. Lastly, the pharmacological targeting of
3-mercaptopyruvate sulfotransferase is less widely repor-
ted, however, several inhibitor molecules have been
identified base on their abilities to affect the rate of enzyme
catalyzed thiocyanate formation in vitro. This structurally
diverse class of inhibitor molecule includes hypotaurine,
methanesulfinic acid along with pyruvate, phenylpyruvate,
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a H,S donor molecules commonly used experimentally as research
tools to manipulate cellular levels of H,S gas. b Structures of several
inhibitor molecules that target CBS and CSE
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oxobutyrate, and oxoglutarate [107]. These molecules
appear to inhibit 3-MST in a concentration-dependent
manner and have been determined to be uncompetitive
inhibitors of 3-MST with respect to 3-mercaptopyruvate
[108, 109]. Typical ICsy values for all three alpha-keto
acids ranging between 9.5 and 13.7 mM. In spite of this
information, no direct confirmation of their inhibitory
action towards 3-MST and it ability to generate H,S has
been reported.

Genetic evidence for a role of CBS, CSE,
and 3-MST in health and disease

The established roles for CBS, CSE in sulfur amino-acid
metabolism are widely recognised [110-112] and it is of
interest that a number of polymorphisms in the genes
coding for these proteins are linked to a range of patho-
physiological conditions in humans [113, 114]. For
example, there are an estimated 150 mutations in the CBS
locus and of these approximately 20 appear to have altered
enzymatic activity [115]. A consequence for this loss often
being homocystinuria [116]. Interestingly, the CBS T833C
variant has been associated with premature coronary artery
disease [117], essential hypertension [118], and an
increased risk of stroke [119]. Similarly, the CBS 844ins68
polymorphism is linked to increase risk of breast cancer
[120], spontaneous cervical artery dissections [121], raised
plasma homocysteine levels [122], and elevated homo-
cysteine—thiolactone concentrations [123]. Homocysteine—
thiolactone is pro-atherogenic [124, 125], and can promote
optic lens dislocation [126]. Of equal interest, are poly-
morphisms linked to the CSE gene that predispose
individuals to hypertension [127] and in some cases raised
plasma homocysteine levels [128]. Several of these poly-
morphisms have been described in patients with
cystathioninuria, and a single nucleotide polymorphism in
CSE, ¢.1364G>T, is linked to elevated plasma homocys-
teine levels [128]. The influence of the rs1021737 and
rs482843 CSE polymorphisms in preeclampsia has been
raised [129], and a proposed role in the development of
chronic hypertension reported [111]. Importantly, many of
these polymorphic variants have reduced V,,,x for the
substrate cystathionine [130]. Polymorphisms linked to the
3-MST gene are also known and the recent characterisation
of a nonsense mutation (Tyr85Stop) that leads to the pro-
duction of a severely truncated protein lacking enzymatic
activity has been described [131]. In spite of the informa-
tion relating to H,S biosynthetic enzymes, data are
currently lacking as to whether these polymorphic variants
influence H,S biosynthetic rates. However, supporting
evidence would indicate that this may be the case.
Research utilising site-directed mutagenesis studies of the
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CBS protein has identified several key cysteine residues
that are directly involved in the regulation of basal CBS
activity and in H,S production [132], and changes in the
CBS binding site of the allosteric activator S-adenosyl-
methionine reduce H,S synthesis by this enzyme [133].
Similarly, several amino-acid residues in CSE have been
identified that are actively involved in H,S production
[134]. Therefore, the possibility that known polymor-
phisms for CBS, CSE, and 3-MST would influence
enzymatic activity of these proteins, and therefore, tissue
H,S levels is not unreasonable.

Further circumstantial evidence linking impaired tissue
biosynthesis rates of H,S and disease are provided from a
range of additional sources. Loss of function in either CBS
or CSE can increase the risk of individual developing
cardiovascular diseases. Moreover, decreased H,S pro-
duction rates in mice predispose animals to vascular
remodeling, hypertension, and early the development of
atherosclerosis. Therefore, the idea that H,S may have an
important function within the cardiovascular system and at
other sites is not a new concept. Indeed, H,S and allied
donor drugs can reduce homocysteine mediate cellular
stress responses and tissue damage in mammalian systems
[135-139]. In addition, it is widely recognised that H,S can
directly affect blood pressure, alter lipid metabolism,
inhibit monocytes adhesion and activate the endothelium
[140, 141], promote vasorelaxation [142], and induce
angiogenesis [143]. H,S also mediates vascular smooth
muscle cell proliferation, migration, and apoptosis
[144-146], inhibits macrophage foam cell formation [147],
chemotaxis [148], and inflammation [23, 149], and
decreases vascular calcification [150], platelet aggregation,
and thrombogenesis [151, 152] (reviewed in [153, 154]).
Importantly, in humans, decreased plasma H,S concentra-
tions are found to correlate with the activation of protein
kinase CPII in uremic accelerated atherosclerosis patients
[155] and in chronic haemodialysis patients with diabetic
nephropathy [156]. Diminished levels of plasma H,S are
also reported to be significantly lowered in CHD patients
and in smokers as compared to normal subjects [157], in
essential hypertensive children suffering from a metabolic
imbalance of homocysteine and hydrogen sulfide [158],
and are decreased in patients on chronic haemodialysis due
to reduced CSE expression [159]. Lower H,S levels also
correlate with the accumulation of lanthionine in the blood
of uremic patients [160]. These changes potentially con-
tribute to hyperhomocysteinemia in uraemia. Intriguingly,
homocysteine has been reported to decrease H,S produc-
tion in macrophages by increasing promoter DNA
methylation and transcriptional repression of CSE [161]. In
addition, the cardioprotective effects of atorvastatin appear
to be partly mediated by the effects of this drug on the
expression of CSE and associated increases in the
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generation of H,S [162]. Therefore, from the available
evidence, it is clear that multiple pathologies and mecha-
nisms underpin these diseases, but, intriguingly, a lack of
H,S production seems to be at least one common thread.
For this reason, the characterisation of gene polymor-
phisms linked with enzymes associated with H,S synthesis
and its degradation requires further exploration. This could
provide a greater understanding of how such polymor-
phisms influence enzymatic function and this may, in the
future, be found to translate to changes in circulatory H,S
levels. A key question is how do changes in the expression
levels of enzymes involved in H,S homeostatic regulation,
and their associated mutations cause disease and what are
the molecular mechanisms responsible for this? To answer
these questions, new approaches that include genetic
models of H,S deficiency and/or overproduction have been
adopted. Specifically, knockout animals lacking genes
encoding for CSE, CBS, 3-MST, CDO and ETHEI. In the
case of studies utilising these models, a greater under-
standing of how H,S functions as a signalling molecule and
how this translates to influencing physiological and bio-
chemical processes in vivo is pushing the boundaries of our
current views for this gas. Importantly, findings from such
work may provide routes for patient screening prior to
pharmacological intervention with H,S releasing drugs to
restore H,S levels.

Molecular approaches to alter H,S biosynthetic
capacity in cells and animals

In addition to pharmacological approaches to alter tissue
H,S concentrations, a number of researchers have
adopted siRNA methodologies to assist in loss of func-
tion studies by targeting H,S biosynthetic enzyme
expression levels. These techniques have been particu-
larly amenable for use in cell-culture systems. As shown
in Table 1, these approaches have assisted researchers in
the manipulation of the expression levels of enzymes
involved in H,S homeostatic regulation across a range of
cell types. These technologies, while technically more
challenging, have shown that H,S is involved in cellular
proliferation and apoptosis [146], endoplasmic reticulum
stress, and insulin secretion [176], and NF-kB and MAP
kinase signalling and inflammation in macrophages
[166, 167]. Curiously, the silencing of 3-MST has
revealed this enzyme to be involved in the H,S pro-
duction that in turn supports mitochondrial bioenergetics
[39, 40]. Currently, siRNA and shRNA systems targeting
CSE and CBS can be obtained from a range of com-
mercial suppliers, including, but not exclusively by,
CAYMAN chemicals, Addgene (Cambridge, MA, USA),
and Santa Cruz Biotechnology (Texas, USA) or can be

custom synthesised by IDT DNA technologies (Glasgow,
UK).

In vivo knockout models of H,S research

Over the last two decades, much has been learnt regarding
the biological roles ascribed to H,S, yet many questions
still remain to be answered. Indeed, little is known
regarding the compensatory mechanisms that may exist to
maintain physiological levels of H,S nor the interplay
between biosynthetic routes and the recently characterised
detoxification pathways involving ETHE1 and SQR.
Establishing links between these two metabolic processes
will be important in the future developed of pharmaco-
logically active drugs and inhibitor molecules that target
the H,S system. The possibility that inhibitors targeting
ETHE1 or SQR could offer an alternate means to manip-
ulate H,S levels is intriguing. These approaches will most
certainly require work within whole physiological systems
and perhaps in this instance in the use of transgenic mouse
models in which genes encoding for H,S synthesising
enzymes have been manipulated. Of relevance here then
are the approaches taken to generate mice devoid of H,S
biosynthetic enzymes as described previously [177-180]
(reviewed in [113]).

Cystathionine-p-synthase knockout mouse models

Watanabe and colleagues were the first group to report on
the generation of a CBS deficiency mouse line using gene
targeting of embryonic stem (ES) cells followed by
incorporation into C57BL/6J mice. This early work
establishes an in vivo system to explore aspects relating to
homocysteine and its associated pathophysiological effects
in cardiovascular diseases. Homozygous animals com-
pletely lacked CBS and mice suffer from severe
homocysteinemia, have severe growth retardation and
many die within 5 weeks following birth. Heterozygous
animals show greater viability and have a 50% reduction in
CBS expression and enzyme activity in the liver and have
twice normal plasma homocysteine levels. Studies using
this model are, therefore, restricted to younger animals and
may consequently be influenced by the age-dependent
expression of other H,S biosynthetic enzymes, such as
CSE. For this reason, some authorities have called into
question the use of this model [177].

Problems associated with early lethality in the CBS
model were later overcome by the work of Wang et al.
[178, 179]. In the first approach taken by this group,
mice were produced with the aim of overexpressing
CBS. This was achieved using a transgenic system in
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p-plasmid

Bioenergetics

CVD

3-Mercaptopyruvate sulfurtransferase

Table 1 continued

Disease model

which the human CBS c¢DNA was placed under the
control of the zinc-inducible metallothionein promoter
(Tg-CBS). Zinc supplementation in Tg-CBS mice causes
a two—four-fold increase in liver and kidney CBS
activity and a 45% decrease in serum homocysteine
levels. In contrast to previous model systems, these
animals do not develop hepatic steatosis, fibrosis, or
suffer from high rates of neonatal death. The second
approach was to engineer mice that express the human
1278T and 1278T/T424N mutant CBS proteins under the
control of a metallothionein driven transgene. These
animals were rescued from early lethality yet still
showed severe elevations in both plasma and tissue
levels of homocysteine, methionine, S-adenosylme-
thionine, and S-adenosylhomocysteine and a concomitant
decrease in plasma and tissue levels of cysteine [178].
Finally, MacClean and colleagues developed a mouse
model null for the mouse CBS gene that carried copies
of the human CBS gene expressed at low levels [180].
So far, CBS KO models have supported a range of
studies focused on folate metabolism [181, 182], blood
brain barrier function [183], endothelial dysfunction
[184], cerebral vascular dysfunction [185], brain func-
tion linked to changes in the SAPK/JNK signalling
pathway [186], redox homeostasis [187—189] microvas-
cular remodelling [190], blood-brain barrier integrity
[191], lung fibrosis [192], lipid homeostasis [193-195],
retinal neuron death [196], infertility [197, 198], and
susceptibility to drug induced toxicity [199]. Of rele-
vance here then is the growing body of work indicating
that H,S plays a part in many of these processes.

Cystathionine y-lyase knockout mouse models

So far, the most widely used animal system in H,S research
is the CSE-KO model. To date, CSE-KO animals have
been utilised to explore the role of H,S within the car-
diovascular disease [204], diabetes [200, 201, 213], and in
studying interactions of H,S with other important gaseous
signalling molecules, such as nitric oxide [202]. The pro-
duction of viable and fertile CSE-KO animals was first
reported in the work of Yang et al. In these homozygous
animals, CSE mRNA and protein levels were absent in
heart, aorta, mesenteric artery, liver, and kidneys. Impor-
tantly, both tissue and serum levels of H,S were
significantly reduced in KO animals with this correlated
with an age-dependent increase in blood pressure and
impaired endothelium-dependent vasorelaxation [204].
This is in contrast to the CSE-KO model reported by Ishii
et al. [203], in which animals appeared both normotensive
and hyperhomocysteinemic. Interestingly, these mice were
extremely sensitive to sulfur amino-acid restriction and
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Table 2 Available CSE knockout mice models have been used to confirm a role of H,S across a wide range of pathophysiological models

Biological Consequence References
process
Vasorelaxation Genetic deletion of CSE in mice markedly reduces H,S levels in the serum, heart, aorta, and other [204]
and tissues. Mutant mice lacking CSE display pronounced hypertension and diminished
hypertension endothelium-dependent vasorelaxation
Cell proliferation CSE-KO mice have lower levels of phosphorylated extracellular signal-regulated kinase (ERK1/2) [205]
and apoptosis in mesentery arteries. SMCs of KO animals display an increased proliferation rate in vitro and
in vivo, and these cells are more susceptible to apoptosis
O, sensing Deletion of CSE severely impairs carotid body response and ventilatory stimulation to hypoxia, as [206]
well as a loss of hypoxia-evoked H,S generation
Cellular Mouse embryonic fibroblasts isolated from CSE knockout mice (CSE-KO-MEFs) display [207]
senescence increased oxidative stress and accelerated cellular senescence. The protein expression of p53
and p21 is significantly increased in KO-MEFs, and knockdown of p53 or p21 reversed CSE
deficiency-induced senescence
Pressure H,S levels are decreased in mice following heart failure. CSE plays a critical role in the [208]
overload- preservation of cardiac function in heart failure
induced heart
failure
Asthma CSE expression was absent and H,S production rate significantly lower in the lungs of CSE-KO [209]
mice. CSE deficiency resulted in aggravated AHR, increased airway inflammation, and elevated
levels of Th2 cytokines IL-5, IL-13, and eotaxin-1 in bronchoalveolar lavage fluid after OVA
challenge
Physiologic CSE-KO induces elevated resting-membrane potential of SMCs and eliminated methacholine- [210]
vasorelaxation induced endothelium-dependent relaxation of mesenteric arteries. H,S is an endothelium
derived hyperpolarizing factor
Renal ischemia/ CSE-KO mice have markedly reduced renal production of H,S, and CSE deficiency increases [211]
reperfusion damage and mortality after renal ischemia/reperfusion injury as compared to wild-type mice
Atherosclerosis Deficiency of CSE in mice leads to a decreased endogenous H,S levels, and age-dependent [212]
increase in blood pressure, and impaired endothelium-dependent vasorelaxation. CSE-KO
animals fed with an atherogenic diet developed early fatty streak lesions in the aortic root,
elevated plasma levels of cholesterol and low-density lipoprotein cholesterol,
hyperhomocysteinemia, increased lesional oxidative stress and adhesion molecule expression,
and enhanced aortic intimal proliferation
Caerulein- CSE-KO mice showed significantly less local pancreatic damage as well as acute pancreatitis- [213]
induced acute associated lung injury compared with the WT mice. Lower levels of pancreatic eicosanoid and
pancreatitis cytokines, as well as reduced acinar cell NF-xB activation in the CSE-KO mice
Ischemia/ CSE-KO mice exhibit elevated oxidative stress, dysfunctional eNOS, diminished NO levels, and [202]
reperfusion (I/ exacerbated myocardial and hepatic I/R injury. H,S therapy restored eNOS function and NO
R) injury bioavailability and attenuated I/R injury
Postischemic CSE-KO reduced postischemic cerebral vasodilation/hyperemia but only inhibited Na-F [214]
cerebral extravasation. Upregulated CBS was found in cerebral cortex of CSE-KO animals. L-cysteine-
vasodilation/ induced hydrogen sulfide (H,S) production is similarly increased in ischemic side cerebral
hyperemia cortex of control and CSE-KO mice
Arteriogenesis Femoral artery ligation of WT mice significantly increased CSE activity, expression and [215]
endogenous H,S generation in ischaemic tissues, and monocyte infiltration. These being largely
absent in CSE-KO mice. Treatment of CSE-KO mice with the polysulfide donor diallyl
trisulfide restored ischaemic vascular remodelling, monocyte infiltration, and cytokine
expression
Pain Paw inflammation and peripheral nerve injury causes the upregulation of CSE expression in dorsal [216]
root ganglia. CSE-KO mice demonstrated normal pain behaviours in inflammatory and
neuropathic pain models. This finding suggestive that CSE is not critically involved in chronic
pain signaling in mice and that sources different from CSE mediate the pain relevant effects of
H,S
Gluconeogenesis CSE-KO mice reduced gluconeogenesis, which was reversed by administration of NaHS (an H,S [217]

donor). H,S upregulates the expression levels of peroxisome proliferator-activated receptor-y
coactivator-1a and phosphoenolpyruvate carboxykinase. Upregulation of PGC-1a is mediated
via the GR pathway and through the activation of the cAMP/PKA pathway. PGC-1a, and the
activities of glucose-6-phosphatase and fructose-1,6-bisphosphatase are increased via
S-sulthydration
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Table 2 continued

Biological Consequence References
process
Mitochondrial H,S supplementation ameliorated pathological remodeling and dysfunction post-MI in WT and [45]
biogenesis- CSE-KO mice. Decreased infarct size and mortality, accompanied by an increase in the number
dependent M2 of M2-polarized macrophages at the early stage of MI. H,S induced M2 polarization was
polarization of achieved by enhanced mitochondrial biogenesis and fatty acid oxidation
macrophages
Antiviral H,S has antiviral and anti-inflammatory activity in respiratory syncytial virus (RSV) infection. [219]
CSE-KO mice showed significantly enhanced RSV-induced lung disease and viral replication
compared to wild-type animals. Intranasal delivery of GYY4137 to RSV-infected mice
significantly reduced viral replication and markedly improved clinical disease parameters and
pulmonary dysfunction
Infiltration and Increased infiltration of macrophages into the infarcted myocardium at early stage of MI cardiac [220]

migration

tissues in CSE-KO mice. Treatment with the H,S donor NaHS enhances macrophage migration.

This is achieved by accelerating internalization of integrin B1 and activating downstream Src-

FAK/Pyk2-Rac pathway

Many of these studies have shown that loss of H,S synthesising capacity within tissues significantly affects the cardiovascular system,
metabolism, and recovery from stress insults. Such studies highlight a fundamental role of H,S in the regulation of cellular stress pathways and in

physiological responses to stress

homozygous animals maintained on a low cysteine diet,
succumbed to acute skeletal muscle atrophy, and reduced
tissue glutathione levels and lethality. Hepatocytes isolated
from these animals were also highly sensitive to oxidative
stress. To date, the CSE-KO model developed by Yang has
been widely used to explore the role of H,S across a range
of pathophysiological conditions. These studies are sum-
marised in Table 2 and include hypertension [204], cellular
proliferation [205], oxygen sensing [206], cellular senes-
cence [207] pressure overload heart failure [208], asthma
[209], vasorelaxation [210], ischemia/reperfusion injury
[202, 211], atherosclerosis [212], caerulein-induced acute
pancreatitis [213], postischemic cerebral vasodilation/hy-
peremia [214], arteriogenesis [215], pain [216],
gluconeogenesis [217], M2 macrophage polarization [45],
antiviral effects [218], and infiltration and migration [219].
Particularly interesting are the functional aspects relating to
interaction of H,S with other gaseous signalling molecules.
It is now widely accepted that H,S and NO readily interact
at physiological pH to produce a range of biologically
active species [65, 220-222]. An established link between
NO and H,S has now been reported utilising the CSE-KO
systems. Studies by Kondo and colleagues reported on the
influence of H,S and its interaction with NO in a murine
model of pressure overload-induced heart failure using
CSE-KO animals [208]. CSE knockout (KO) animals had
reduced circulating H,S levels and cardiac dilatation and
dysfunction. In this instance, H,S therapy was found to be
cardioprotective. This corresponding with the upregulation
of the VEGF-Akt-eNOS-nitric-oxide-cGMP pathway, pre-
served mitochondrial function, attenuated oxidative stress,
and increased myocardial vascular density. Elevated

@ Springer

oxidative stress, dysfunctional eNOS, diminished NO
levels, and exacerbated myocardial and hepatic I/R injury
are also reported for CSE-KO animals [202]. Collectively,
this work suggesting that H,S and NO interact and that H,S
is particularly important in the regulation of NO within the
cardiovascular system.

Several newer reports have focused on the overex-
pression of CSE within mammalian systems. For
example, in the work of Elrod et al, a transgenic mouse
model was developed in which CSE is overexpressed
within cardiac tissues leading to increased myocardial
levels of H,S [37]. These mice had a reduction in infarct
size following MI-R injury and were used to establish
that a localised increase of H,S within cardiac tissues
protects against myocardial infarction. Similarly,
manipulation of CSE either via knockdown or overex-
pression in mammalian cells has also shed additional
light on the cardioprotective effects of H,S. Wang and
colleagues found that CSE overexpression reduces ox-
LDL-stimulated tumor necrosis factor-oo (TNF-a) gen-
eration in Raw264.7 and primary macrophage, while
CSE knockdown enhanced it [149]. Under pathophysi-
ological conditions linked to CVD, Cheung et al.
reported that overexpression of CSE reduces markers
associated with atherosclerosis [223]. Using transgenic
ApoE knockout mice overexpressing CSE (Tg/KO),
increased endogenous H,S production in aortic tissue
was demonstrated that correlated with reduced
atherosclerotic plaque sizes and reduced plasma lipid
profiles in mice maintained on an atherogenic diet.
Moreover, an upregulation in plasma glutathione per-
oxidase, indicative of reduced oxidative stress, and an
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increase in the expression of p-p53 and downregulation
of inflammatory nuclear factor-kappa B (NF-«xB) were
noted [223]. Decreased CSE expression and its influence
on H,S metabolism and atherosclerosis are currently an
active area of investigation. Utilising the CSE knockout
mouse, Mani et al. revealed a functional role of the CSE
enzyme in atherosclerosis development [212]. In CSE-
KO animals, maintained on an atherogenic diet, choles-
terol levels were found to be twofold higher within the
plasma of CSE-KO animals compared to the WT ani-
mals. Moreover, fatty acid streaks, atherogenic lesions,
and reduced blood flow were seen in CSE-KO animals.
In this instance, KO animals treated with NaHS for
12 weeks showed significant improvements in plasma
lipid profiles and decreased atherosclerotic lesions thus
confirming a role of H,S in atherosclerosis. Furthermore,
by combining the CSE-KO with the ApoE-1 KO genetic
background to produce a double KO system (DKO), the
authors were again able to demonstrate reduced lesion
formation in DKO animals when treated with NaHS
[212]. Thus, endogenous loss of CSE has been shown to
increase disease severity across several independent
studies utilising the CSE-KO model.

3-Mercaptopyruvate sulfurtransferase knockout
mouse models

The roles for both CBS and CSE and their part played in
the production of H,S within biological systems have
been broadly defined in recent years, yet the view that
these two enzymes are perhaps the only ones responsible
for maintaining physiological levels of H,S is rather
simplistic. As mentioned, an additional enzymatic system
is known, that of 3-MST [224]. In view of this, efforts
have been made to generate a 3-MST murine model that
could potentially provide a detailed picture of how this
enzyme functions and its role in diseases [227]. From a
biochemical perspective 3-MST is a multifunctional
enzyme involved in (1) cysteine catabolism, since it
catalyses the trans-sulfuration of the substrate 3-mercap-
topyruvate to pyruvate and (2) functions in cyanide
detoxification. Also, the protein has a potential redox
function since in the presence of the oxidant hydrogen
peroxide (H,O,), enzyme activity is inhibited [225].
Oxidant-mediated inhibition appears to occur via the
formation of a sulfenate (SO™) moiety at the catalytic site
cysteine. Enzymatic activity can be re-established in the
presence of reducing agents DTT or reduced thioredoxin
but not the cellular antioxidant glutathione. Under con-
ditions of mild oxidative stress, such as those found in
physiological systems, 3-MST activity is reduced leading
to a resultant increase in cysteine concentrations in vitro.

Thus, the current views suggest that 3-MST serves as an
antioxidant protein. The curious fact that this enzyme is
localised to mitochondria has further bolstered work on
this enzyme, especially given the known inhibitory effects
of H,S on cytochrome ¢ oxidase function [226]. Ongoing
work in this area has shown that 3-mercaptopyruvate
stimulates mitochondrial H,S production that in turn
stimulates electron transport and bioenergetics at low
concentrations (10-100 nM). Conversely, siRNA-medi-
ated silencing of 3-MST reduces basal bioenergetics and
prevents the stimulatory effects of 3-MP on mitochondrial
energetics. In this scenario, H,S can be seen to serve as
an electron donor that functions as an inorganic source of
energy that supports electron transport and ATP produc-
tion in mammalian cells. Interestingly, oxidant-mediated
stress reverses these effects in cells. Shibuya reported that
that tissue levels and production of H,S within brain
tissues were similar in CBS KO mice with this supporting
the notion that an alternate H,S production system must
exist within brain tissues [87]. Indeed, this work con-
firmed that CBS was not the primary source of H,S
within this organ. Further characterisation led to the
realisation that two proteins work in concert to produce
H,S within brain tissues, these being, cysteine amino-
transferase and 3-MST respectively [87]. While a 3-MST-
KO model has been developed currently only one report
exists citing the generation and utilised of this model.
Nagahara et al. were the first to describe a homozygous
(null) MST-knockout (MST-KO) mouse model [227].
These mice have increased anxiety-like behaviour, with
increased serotonin levels in the prefrontal cortex. In this
instance, 3-MST was proposed to function as an antiox-
idant redox-sensing protein involved in maintaining
cellular redox homeostasis.

Genetic models of H,S detoxification systems
in animals

Three major enzymatic routes for the removal of H,S from
tissues are currently recognised these constituting the
aforementioned proteins SQR, ETHEI, and CDO. At pre-
sent, the sites and rates of H,S detoxification have been less
well defined than that of the biosynthetic routes of pro-
duction. However, these systems likely play an equally
important function in maintaining physiologically relevant
tissue concentrations of H,S. Changes in the expression
levels of these proteins would alter the physiological con-
centrations of this sulfurous gas in vivo and therefore, the
response of cells to exposure to this molecule. Even with
their recognised association with H,S detoxification, only
now are we beginning to see how these enzymes influence
physiological levels of this gas.

@ Springer
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Sulfide—quinone reductase-like protein knockout
models

In mammalian systems, sulfide is oxidized by the mito-
chondrial sulfide—quinone reductase-like protein (SQR), a
homologue of bacterial sulfide—ubiquinone oxidoreductase
(SQR), and fission yeast heavy metal tolerance 2 protein
[228]. This protein is involved in the transfer of an electron
from sulfide to membrane intrinsic quinones [229]. The
process of sulfide oxidation, therefore, links sulfide cata-
bolism to oxidative phosphorylation and the subsequent
production of ATP. This whole process allowing for sulfide
to be used as an inorganic substrate for the human electron
transfer chain. SQR is a component of several mammalian
tissues, and protein expression has been confirmed within
heart, lung, colon, liver, kidney, thyroid, brain, leukocytes,
and penis and testicles of mice and rats [230]. Fractionation
experiments revealed this protein to be localised to mito-
chondria. SQR mRNA levels can be increased following
exposure to sulfide in T cells and also with increasing age
within the kidney. This finding indicating that the expres-
sion levels of this protein show some plasticity that allows
for SQR to respond to changes in tissue H,S levels. It is
easy to envisage that changes in SQR protein levels would
influence H,S oxidation rates and the role of H,S in the
production of ATP, ROS formation, oxygen sensing [231]
and subsequently the effects of this gas on cell-signalling
networks [1] and on S-sulfhydration of proteins [62].
Recently, polymorphisms have been identified for the SQR
gene, which are linked to pathophysiological conditions in
humans. Jin et al. reported on the SQR 1264T gene variant
that increases susceptibility to osteoporosis in Korean
postmenopausal women [232]. In another study, genomic-
wide screening in Filipino women reported that the
rs12594514 SNP in the SQR gene is associated with two
obesity-related phenotypes [233]. Interestingly, the cellular
levels of H,S are critical determinants in the regulation of
bone remodelling [169, 232] and osteoclast differentiation
[234, 235]. Moreover, it is now widely recognised that H,S
has a range of functions linked to metabolism and obesity
[7, 236-240]. Therefore, it is likely that SQR has the
potential to influence some of the biological effects of H,S
in vivo. To date, there are no reported murine SQR KO
models however, SQR KO C.elegans systems are known.
Using gene knockout strategies in C. elegans, SQR was
found to be important in the maintenance of protein
translation. In SQR mutant worms, exposure to H,S leads
to phosphorylation of elF2a and the inhibition of protein
synthesis. The authors speculating that SQR may be
involved in H,S signalling relating to proteostasis [241]. Of
relevance, here is the potential link with H,S, proteostasis
and the anti-ageing effects of this gas.

@ Springer

Ethylmalonic encephalopathy knockout mouse
models

Another candidate protein potentially involved in H,S
detoxification is that of ETHE1. The ETHE1 gene codes
for an iron-containing protein from the metallo B-lacta-
mase family are required in the mitochondrial sulfide
oxidation pathway and for the oxidation of glutathione
persulfide (GSSH) to give glutathione and persulfate
[91]. ETHEI protein catalyses the second step in the
mitochondrial sulfide oxidation pathway downstream of
SQR. Mutations in this gene cause the rare condition
known as ethylmalonic encephalopathy (EE) that affects
the brain, gastrointestinal tract, and peripheral vessels
[242]. This inborn error of metabolism is an autosomal
recessive condition that is invariably fatal and charac-
terised by encephalopathy, microangiopathy, chronic
diarrhea, and defective cytochrome c oxidase (COX) in
muscle and brain [243]. The latter oxidizes H,S to per-
sulfide and transfers electrons to the electron transport
chain via reduced quinone. Indeed, recombinant
expression of human SQR is known to enhance sulfide
oxidation in mammalian cells [244]. More revealing
insights as to the functional role of ETHE1 have been
reported [245]. Adopting a proteomic approach Hild-
brant and colleagues conducted an analysis of ETHEI1
KO mouse tissues and confirmed a role of ETHEL1 in the
sulfide oxidation pathway while also revealing more
subtle effects on post-translational protein modifications
linked to protein cysteine modification. Elevated H,S
levels caused by loss of ETHEI likely cause an increase
in S-sulfhydration of cellular proteins via persulfide-
mediated reactions [246]. Of particular interest, from this
work is that sulfide signalling seems to play a pivotal
part in regulating mitochondrial catabolism of fatty acids
and branched-chain amino acids. Interestingly, sulfide
concentrations are decreased in the plasma of overweight
men and low sulfide levels are associated with the
development of insulin resistance in Type 2 diabetes
[247]. Moreover, in rats fed high-fat diets ETHE1 and
SQR are reported to be decreased by more than 50% in
tissues [248].

Cysteine dioxygenase knockout mouse models

Finally, a common component linking all of the enzymatic
systems described herein is their reliance on intermediates
derived from sulfur amino-acid metabolism, specifically,
the interplay between cysteine synthesis, its cellular uses,
and its degradation. Cysteine homeostasis and the relative
rates of synthesis versus degradation will clearly influence
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how and when H,S will be produced within tissues. This
coupled with the relative rates of oxidation of both mole-
cules further adding complexity to the H,S story. One
particularly interesting model is the cysteine dioxygenase
(CDO; EC: 1.13.11.20) KO mouse model. Ordinarily, CDO
oxidizes cysteine-to-cysteine sulfinate, which is further
metabolized to either taurine or to pyruvate plus sulfate.
This metabolic pathway is believed to function in main-
taining cysteine levels and to supply circulatory taurine. In
the CDO KO mouse line, there is postnatal mortality,
growth deficit, and connective tissue pathology. Moreover,
KO animals have reduced taurine levels, elevated cysteine
levels, and increased desulfuration in liver tissues that
correlates with the elevated production of H,S. This
reported to be due to CBS activation. Importantly, CDO
null mice also exhibit lower hepatic cytochrome c oxidase
levels, suggesting impaired electron transport capacity.
Cytochrome c oxidase being a known cellular target prone
to H,S-mediated inhibition. Similarly, in hepatocytes iso-
lated from CDO null mice increased synthesis of H,S
within cells occurs that is perhaps due to an increase in the
endogenous pool of cysteine within tissues [249]. Also
reported in the CDO KO mice is an increase in the urinary
excretion of thiosulfate, coupled with higher tissue and
serum cystathionine and lanthionine levels. Importantly,
the inhibition and destabilization of cytochrome ¢ oxidase
are observed that again is consistent with increased pro-
duction of H,S [249, 250]. Thus, it would appear that the
ability of CDO to control cysteine levels may be necessary
to maintain low H,S/sulfane sulfur pools within tissues to
facilitate the use of H,S as a signalling molecule [251].
This model, therefore, provides a unique system to explore
cysteine metabolism and its influence of H,S production
and redox-signalling networks.

Availability of knockout mouse models for H,S
research

At this time, it may be of interest to researchers that CBS
KO mice are now commercially available and can be
obtained from the Jackson laboratories which supplies the
JAX® Mice derived from the fully sequenced mouse strain,
C57BL/6J [252]. This particular line is useful for studying
the in vivo role of elevated levels of homocysteine in the
aetiology of cardiovascular diseases and was developed in
the lab of Dr Nobuyo Maeda at the University of North
Carolina at Chapel Hill. A number of researchers have
utilised this mouse model to determine the functional role
of H,S in colitis [253] for the role of H,S in alveolarization
[254] and in the prevention of hyperhomocysteinemia
associated chronic renal failure [255], however, studies are
limited primarily due to the high mortality rates in

offspring. In the case of research using CSE knockout
(CSE-KO) animals, this model is more widely reported in
the literature. These animals have markedly reduced H,S
levels in the serum, heart, aorta, and other tissues and
mutant mice lacking CSE display pronounced hypertension
and diminished endothelium-dependent vasorelaxation.
Again, this model is particularly useful for studying car-
diovascular disease. Although not commercially available
at present several institutions maintain the CSE-KO mouse
model that was originally developed in the laboratory of
Rui Wang, Lakehead University, Thunder Bay, Ontario,
Canada. This model is the most widely used physiologi-
cally relevant model and has been the focus of research
ranging from the role of H,S in vasorelaxation [204], to O,
sensing in the carotid body [206]. 3-MST and ETHE1 KO
animals are maintained at the Isotope Research Centre,
Nippon Medical School, Tokyo and at the Institute of
Neurology Carlo Besta-Istituto di Ricovero e Cura a
Carattere Scientifico Foundation, Milan, Italy. Hopefully in
the future, these models will become more common place
in research focused on H,S biology.

Non-mammalian genetic models

The majority of work highlighting a biological role for H,S
has been derived from mammalian models. Information
derived from non-mammalian models reflects on the evo-
lutionary importance of H,S and its role in biochemical and
physiological processes across different taxa. Several
reports now describe the homeostatic systems and physi-
ological effects of H,S across a range of animal and plant
systems particularly in the model organisms C. elegans, D.
melanogaster, D. rerio, and Arabidopsis thaliana
[256, 257]. The reason for this work is one of translation,
since, for example, the exploitation of the H,S biosynthetic
pathway in animals and in plants may assist in Agritech for
the purpose of improving crop yields or resistance to
pathogen attack. To date, only a handful of studies have
been described in which the targeted deletion or overex-
pression of H,S synthesising enzymes has been
manipulated in non-mammalian systems. Much of this
work has utilised molecular approaches to alter the
expression levels of H,S synthesising enzymes in the
nematode worm, C. elegans. These studies have identified
roles for H,S in the ageing process, in longevity, and in the
health benefits attributed to caloric/dietary restriction. It is
widely known that worms exposed to exogenous H,S have
increased longevity and thermotolerance [258, 259].
However, direct molecular confirmations that these physi-
ological processes can be controlled via endogenous H,S
synthesis have only recently been described [54, 55]. In
these studies, siRNA-mediated silencing approaches were
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utilised to knock down C. elegans targets. Deletion of
CYST-2, a cysteine sulfthydrylase, caused a significant
reduction in lifespan in worms exposed to stress conditions
[54]. This finding establishing a clear link between H,S
synthesis and the ability of worms to adapt and recover
from stress insults associated with the ageing process.
Indeed, deficiency in mpst-1, mammalian 3-MST ortho-
logue 1, reduces lifespan in C. elegans. It has subsequently
been demonstrated in the work of Hine et al. that H,S
production in C. elegans is linked to the health benefits
attributed to caloric/dietary restriction. In this study, util-
ising siRNA technologies, individual KO experiments were
performed that focused on a number of proteins associated
with the trans-sulfuration pathway, namely, the cys-
tathione-y-lyase worm homologues CTH-1 and CTH-2 and
the CBS homolog CBS-1 and CBL-1 [260, 261]. Loss of
functional CBL-1 and CBS-2 protein appears to have no
effects on longevity when expressed in the eat-2 mutant
worms; the eat-2 mutant serving as a genetic model of life
extension that mimics dietary restriction. Interestingly, eat-
2 worms produce more H,S than their wild-type counter-
parts. Importantly, the overexpression of CBS-1 extends
the median lifespan of wild-type worms this clearly
showing that H,S mediates the beneficial effects attributed
to dietary/caloric restriction in C. elegans.

Similar finding has also been reported for Drosophila
melanogaster. In this model, dietary restriction promotes
the upregulation and increased activity of the trans-sulfu-
ration pathway leading to increased tissue synthesis rates of
H,S [262]. Transgene-mediated increases in gene expres-
sion and enzyme activity of Drosophila cystathionine [-
synthase (dCBS) are sufficient to increase fly lifespan.
Moreover, the inhibition of the trans-sulfuration pathway
effectively blocks the lifespan extension normally observed
in diet-restricted animals. These findings are of particular
interest, since they provide an additional evidence that H,S
plays important functional roles in the ageing process of
living organisms. Besides, ageing, H,S also appears to
mediate neurodegenerative processes in Drosophila mod-
els. For example, overexpression of CSE in Drosophila
suppresses spinocerebellar ataxia type 3-associated damage
and neurodegeneration [263]. The observed decreased in
cellular damage being attributed to a reduction in oxidative
stress and a reduced immune response in flies. Clearly,
these findings correlate well with the known antioxidant
and anti-inflammatory effects attributed to H,S.

Work using teleost’s species, such as Danio, are rare,
but, nonetheless, provides important information on the
physiological role of H,S. In the work of Kumai et al., H,S
was found to influence Na* homeostatic regulation in the
larva of D. rerio [264]. Translational gene knockdown was
used to reduce CSE expression in tissues. Using this
approach Kumai and colleagues were able to elegantly
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demonstrate that H,S is an endogenous inhibitor of Na™*
uptake in developing zebrafish.

Conclusions

Over the last decade, considerable evidence has been
accumulated which collectively points to a functional role
for H,S in a number of physiological systems. Much of
these data have been derived from pharmacological
intervention in which inhibition of enzymatic systems
linked to the production of H,S has been targeted or via
direct drug targeting using small molecular weight H,S
donor molecules. Invariably, these studies have high-
lighted a role of H,S levels within a number of
pathophysiological states and that restoration of tissue
H,S levels is protective in the majority of cases. Despite
the current knowledge, and continued breakthroughs, one
can envisage that transgenic models will be at the fore-
front of future work in this area. Developments based on
the approach taken by Mani et al. in which a double
knockout mouse model in which both the CSE and the
apolipoprotein E gene are silenced may be particularly
revealing [212]. Studies using these models have been
fruitful and have shown how changes in cellular H,S
levels influence physiological processes. Yet, the true
power of these models is still to be realised. Since the
discovery that cross talk exists between H,S with other
gaseous signalling molecules, such as NO, the use of
transgenic models in which one or both sets of synthe-
sising enzymes are silenced may be invaluable in future
studies. Data on the interactions of NO with H,S are only
just emerging and it would be fascinating to explore the
effects of incorporating the CSE-KO background into
other transgenic systems such as that of iNOS [265] or
eNOS KO [266, 267] mouse models. How would the loss
of each gas alter the formation and levels of circulatory
nitrosothiols for example? What would be the conse-
quences of this systemically? Could biologically active
persulfides compensate for the loss of nitrosothiols? More
revealing is the current evidence showing that both gases
can influence mitochondrial function, energy metabolism,
and tissue homeostasis, but the functional consequences
of combined defects in H,S and NO production are not
known. Could these interactions, or lack off, underpin
dysregulation in metabolism as seen in diabetes or obe-
sity? The development of these models would also be
particularly useful in the screening of H,S/NO hybrid
donor drugs [268-270]. Finally, could double knockout
models be developed to explore the influence of H,S
detoxification enzymes on cardiovascular function and on
inflammatory responses in animals? What, for example,
would be the effect of loss of CBS, or 3-MST in the
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apolipoprotein E KO murine model? Would this further
predisposes animals to atherosclerosis, and would similar
effects be found with the overexpression of SQR and
ETHE1? With the development of these transgenic
models, there are certainly more questions than answers
and much remains to be explored regarding the role of
this gas within biological systems. Hopefully, a greater
understanding will come from the use of these newer
tools that will hopefully assist in the development and
introduction of new H,S releasing pro-drugs within the
clinic.
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