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Abstract— This paper proposes an environment-dependent vehicle dynamic modelling approach
considering interactions between the noisy control input of a dynamic model and the environment in
order to make best use of domain knowledge. Based on this modelling, a new domain knowledge-aided
moving horizon estimation (DMHE) method is proposed for ground moving target tracking. The
proposed method incorporates different types of domain knowledge in the estimation process
considering both environmental physical constraints and interaction behaviours between targets and the
environment. Furthermore, in order to deal with a data association ambiguity problem of multiple target
tracking in a cluttered environment, the DMHE is combined with a multiple hypothesis tracking
structure. Numerical simulation results show that the proposed DMHE-based method and its extension
could achieve better performance than traditional tracking methods which utilise no domain knowledge
or simple physical constraint information only.

Index Terms—Multiple target tracking, domain knowledge, force-based model, moving
horizon estimation (MHE), multiple hypothesis tracking (MHT).

I. INTRODUCTION

Tracking multiple road users plays an important role in various applications such as surveillance,
advanced driver assistance systems (ADAS) and autonomous vehicles. Many model-based state
estimation methods have been proposed for target tracking. However, the majority of current methods
assume an open field environment in which the tracked target(s) could move freely. This contradicts
with the realistic scenario where the motion of the ground target(s) movement is often affected by its
operational environment such as road and terrain. This information could be taken as domain
knowledge and exploited in the development of tracking algorithms in order to enhance tracking

quality and continuity.
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The most apparent domain knowledge for ground vehicle tracking is the road constraint
information such as the constrained region imposed by a road map. The studies on the road
network-aided ground vehicle tracking have been reported in [1-6]. In these papers, the road network is
taken as physical constraint information. Although comprehensive studies have been made for dealing
with constraint information, limitations still exist. In particular, for a realistic tracking scenario, in
addition to above physical road constraints, there are interactions between the target and its
surrounding environment which need to be considered. For instance, the driver behaviours are affected
by the surrounding environment and tend to obey the traffic rules. Drivers typically try to keep away
from the road boundary while following the road/lane centre and the speed limit. They also anticipate

potential collision risks with incoming cars and make avoidance manoeuvres whenever necessary.

An accurate dynamic model reflecting the aforementioned realistic movement of a vehicle is vital to
obtain good tracking performance, especially when limited or even no measurements are available.
However, most of the current vehicle dynamic models for target tracking ([10, 11]) predict the target’s
location from its past trajectory without fully taking into account the environmental interaction
information. Recently, a social force model [12, 13] has been applied to model the interactions between
pedestrians and environmental objects (building and walls) by using forces introduced by a potential
field. These forces reflect different motion behaviours, for example, targets may be attracted to other
objects or pushed away from them. However, the applications of the social force are limited to
pedestrian tracking in the context of surveillance rather than vehicle tracking.

With this background, we propose a new vehicle dynamic modelling approach and its application to
the multiple target tracking (MTT) problem. The proposed modelling extends the traditional methods
by incorporating the environmental information into the noisy control input of a dynamic model. The
interaction between the target and the environment is modelled by virtual forces constructed by the
target state, target dynamics and environment information. Compared with existing social force model
used for pedestrian tracking [12, 13], the proposed model is more suitable for ground vehicle tracking
involving much faster manoeuvres as it utilises the entire vehicle dynamic states (e.g. position and
speed) and the predicted future position rather than using current position information only.

Among various target estimation algorithms [7, 8], the optimisation-based moving horizon
estimation (MHE) has a promising capability of being able to accommodate different types of
constraints [9, 14, 25]. Thus, this study proposes a domain knowledge-aided MHE method (denoted as
DMHE) by using the aforementioned vehicle dynamic model, which incorporates both the physical
environmental constraints and interaction information into the tracking process in a comprehensive
manner. The DMHE is further extended by combining with multiple hypothesis tracking (MHT),
denoted as the DMHE-MHT, to deal with miss detection and false alarm considering a data association
problem in a realistic multiple target tracking scenario. Note that, although miss detection and false
alarms frequently occur in a cluttered environment, they have not been fully considered in most domain
knowledge-aided tracking works [1-6]; only miss detection is considered in [2, 3]. In the proposed
DMHE-MHT strategy, tracking association ambiguity is handled by the MHT concept which associates

measurements with corresponding targets. The association results are then applied for the DMHE
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optimisation function construction.

This remaining part of this paper is structured as follows. The literature review on the associated
problems in the domain knowledge aided MTT field is presented in Section Il. The domain knowledge
dependent dynamic and measurement model are proposed in Section Ill. Section IV explains the
DMHE-based target tracking algorithm, as well as its extension by combing it with the MHT to solve
the MTT problem. In order to verify the benefit and efficiency of the proposed algorithm, numerical

simulation results are presented in Section V. Finally, conclusions are given in Section VI.

Il. LITERATURE REVIEW

In this section, we review the MTT problem from its related three aspects: vehicle dynamic
models, state estimation aided by domain knowledge (mainly the constraint information in the
current works) and the data association:

A. Vehicle dynamic models

Various dynamic models can be generally divided into three categories: macroscopic, mesoscopic
and microscopic models [28], [29]. In macroscopic models, the dynamics of the whole group of
moving objects is described as an aggregate flow. Mesoscopic models determine the state of the system
by the position or velocity distribution of each entity on the basis of aggregate relationships.
Microscopic models refer to entities individually. In this case, the dynamics of every individual is
considered by incorporating the social behaviour of each target taking into account the interaction
between the target and environmental moving/static objects. This paper focuses on incorporating the
environmental information in a target tracking problem using the concept of the microscopic model.
Examples of microscopic models include car-following model [28], cellular automata model [29],
optimisation-based models [30] and force-based models [12]. Among them, the force-based models
have a great advantage of incorporating the environmental information as different sources of forces

deterministically in a continuous model.
B. Constrained state estimation

One of effective approaches to solve a road-constrained multiple target tracking (MTT) problem is
to incorporate the constraint-related information into a standard filtering algorithm (i.e. state estimation
process) as state constraints. Kalman filtering and its variations can be used to estimate the state of a
target based on its dynamic and measurement models while considering limited constraint information.
However, when the road state constraint types cannot fit easily into the structure of the Kalman filter
(i.e., non-linear and inequality constraints), they are often ignored or dealt with heuristically [25].
Recently, some other methods, for instance the constrained Particle filters (PFs) and the constrained
Gaussian mixture filters (GMF) (see [8], [9], [31], [32], for more details), are also developed based on
optimisation and truncation approaches. The majority of filters proposed to solve the constrained
estimation problems focus on linear (in)equality or nonlinear equality constraints. A little research has

been conducted on nonlinear inequality constraints so far. However, nonlinear inequality constraints



(e.g. curved road boundary) are important and necessary for most tracking scenarios in ground vehicle

tracking problems.

To address above issue, the moving horizon estimation (MHE) can be adopted, which proposed by
Rao et al. [9] as a constrained state estimation method for nonlinear discrete-time systems. The basic
strategy of the MHE is to reformulate the estimation problem as an optimisation problem using a
fixed-size estimation window. Theoretically, for a linear system without constraints and with a
quadratic cost, the MHE becomes the same as the Kalman filter when an infinite horizon window is
considered. This method has been widely used in chemical engineering. Other applications include
hybrid systems, distributed, network systems, and large-scale systems. However, the implementation of

the moving horizon approach in vehicle target tracking is still relatively an uncharted area.

Advantages of the MHE for target tracking are manifolds. Firstly, since the method is based on
optimisation, road or similar constraints can be naturally handled by the MHE as additional (non)linear
and/or (in)equality constraints. In addition to state constraints, the MHE is also able to incorporate
constraints on the process and/or observation noises for modelling bounded disturbance or truncated
distribution/density representing the influence of the operation environment on vehicle movement such
as acceleration and deceleration. Another advantage of using the MHE in target tracking is that it
always considers a certain humber of latest measurements. Such feature is very meaningful in target
tracking especially when targets are occluded by each other or static obstacles which leads to no
reliable measurement during certain time steps. Simulation results in [7], [8], [14] showed that MHE
achieves the smallest estimation error for nonlinear systems and nonlinear constraints. It was also
shown that the constrained MHE filter outperforms most of the other constrained algorithms (e.g.
constrained particle filter, constrained unscented Kalman filter, etc.) in terms of estimation error while
keeping an acceptable computational time for target tracking applications with a relatively simple

implementation process.
C. Data association

Different techniques can be used to deal with the miss detections and false alarms for MTT data
association problems; for example, Nearest Neighbour Standard Filter (NNSF) [15], Global Nearest
Neighbour (GNN) approach [16], Joint Probabilistic Data Association (JPDA) [17], Multiple
Hypothesis tracking (MHT) algorithm [18] and finite set statistics (FISST) [19]. Among them, the
MHT is a complex approach that considers data association across multiple scans and multiple
hypotheses. The MHT essentially keeps a set of multiple hypotheses, and the assignment ambiguity
will be resolved in future when subsequent new observations are arrived. Hard decisions are not made
until they are needed with sufficient information rather than just the current data frame; thus possible
error association could be corrected when more evidences are obtained. Such features along with the
dramatic increases in computational capabilities have made the MHT a preferred data association

method for modern tracking systems [20].



I1l. ENVIRONMETAL INFORMATION AIDED DAYNAMIC AND MEASUREMENT MODEL
A. Environmental Information-Aided Dynamic Model

First let us review the general dynamic model for target tracking problem:

Xpe1 = f(Xg) + oy 1)

where x represents the state vector, which usually includes the position and velocity for tracking
problem. w, is generally known as the process noise and more specifically considered as noisy
acceleration components that controls the dynamic evolution of x, and follows a certain type of
distribution to represent uncertainty of a driver’s behaviour. f(-) represents the system dynamic
function which reflects a desired target dynamic type representing the state transition between
consecutive time steps. According to [10], in most of the target tracking problems, the control term wy
is modelled as a Gaussian distribution with zero mean and constant covariance matrix representing
target movement uncertainty irrespective to the surrounding environment. However, in realistic
tracking scenarios, targets’ movements are affected by the surrounding environment (e.g. road
boundary, road centreline or speed limit). In other words, the vehicle noisy control input w, from

uncertain driver behaviours is related with the environment.

Therefore, this section proposes a new vehicle dynamic modelling approach which incorporates
environmental information into the vehicle control input, inspired by the social force model [12, 21]. In
the original social force model as in [12, 21], pedestrians are assumed moving with low and constant
velocity in a short time interval and force is considered to be only related to the relative distance
between pedestrian’s current position and other environmental objects. Compared with the human
tracking scenario, our problem exhibits much more complex vehicle movements with high velocity. In
this case, the force (control) term needs to consider not only position but velocity information and the
desired dynamics of the vehicle. As illustrated in Fig. 1(a), the object j is assumed to perform a turning
manoeuvre should receive a higher repulsive force than the object i because it will get closer to the
boundary. Besides, forces should also relate to the magnitude of the velocity; for instance, if the
velocity v; of the object j towards the road boundary becomes larger, a larger repulsive force should

be imposed on the object.

In the proposed dynamic model, both repulsive and attractive effects from the environment are
considered where the repulsive (or attractive) force is modelled as a monotonously decreasing (or

increasing) exponential function. According to the current state x, (including both position and

predict
i

velocity states) of the vehicle i, the predicted position x is first calculated from the dynamic

model determined by f(x,). In this way, the entire state and dynamic model information are
incorporated. Then, the relative Euclidean distance d?; “*““*" between x"**** and position of the

object j (e.g. road boundary, road centreline or other vehicles) is estimated. The repulsive/attractive

force between target i and object j can then be represented as:

_dprediction
repulsive __ . ij
Fig e = A exp (—) n; @)
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_dprediction
attractive _ 4 , _ ij
i =A-|1—exp < B ) n;; 3)

where A and B are positive constants representing the magnitude and range of the force, respectively.
n;; is the normalised vector pointing form i to j.

As shown in Fig. 1(b), it is assumed that there exist different forces acting on ego vehicle i
generated by the surrounding environmental objects, such as the repulsive force f;, from road
boundary o, attractive force f;. to the centreline ¢ and the repulsive force f;; from another moving

vehicle j to avoid a collision,

These forces are summed to a net environmental force f€ acting on the vehicle i, which can be
incorporated into the dynamic model (1) as:

Xisr = f(x5) + 1(@%) + oy (4)

where a$, =’;n—" represents the acceleration introduced by the environmental force. I(a%) is the

function representing the influence of the acceleration a$ on the vehicle dynamic model, which has
different forms according to different representations of (1).
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Fig. 1 The influence of the environment on a moving target by forces: (a) different repulsive forces f;,
and f;, on objects iand j with different dynamics between T=t (when objects position are marked as
green circles) and T=t+At (where objects position are marked as dash circles) (b) p; receives
interaction force f;; from another vehicle, attractive force f;. from the centreline and repulsive

force f;, from the road boundary.
B. Environmental Information-Aided Measurement Model

For the model based tracking problem, usually measurements are associated with a measurement model

which can be generally represented as:
Yi = h(x) + vy ®)
where y, is a measurement vector, h(x,) is the measurement function and v, is zero mean
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Gaussian noise of the measurement with the covariance R.

We assume that the ground vehicles only move within the road network region. This matches with a
realistic scenario where road boundaries are considered as physical constrains and all drivers are
supposed to move within the constraint region. Due to the limited tracking sensor’s capability, the
received measurements usually contain noises as in (5), which make them not always stay on the road
network and far away from the ground truth values. Such noisy measurements are usually known as
false alarms in MTT which make data association process really difficult with tracking ambiguity
problems. To this end, a pre-processing approach is used in this paper to project the raw measurements

onto the constrained surface (road network) at each time step.

Assuming that that target vehicles are traveling on linear road following the centre line, the row

measurement data y, could then be projected by the following linear equality constraint as:
Dy, = d, (6)

where D is a full-rank constraint matrix and d, is the constraint vector. y, is the projected
(constrained) Cartesian measurement. Following [25], the expression of deriving constrained
measurement ¥, by directly projecting the unconstrained Cartesian coordinate measurement y, onto
the constraint surface is by solving the problem:

miny, (¥ — ¥i) W Fx — yi) s.t. Dy, =d, (7

where W is a symmetric positive definite weighting matrix. In this work, it is chosen as W =R
following the mean square method, where R is a measurement error covariance matrix of the original
measurements. The solution of this problem is then given by:

Y=Y —RDT(RID ) (Dy) —dy) 8)
According to [25], the projected measurement error covariance matrix R can be expressed as:
R=U-R'DTMR'DTD)RU—-R-'DT(DR D T)~1D)T 9)

In this way, the measurement model is modified as:
~ x ~
Y = [y;z] + Uk (10)

. . X - .
where ¥, is the projected measurement, [y:] represents the target position and v, is the

measurement noise for the projected measurement with zeros mean and covariance R.

For nonlinear road constraint g(¥,) = d;, the development of the constrained measurement (10) as
given above is still valid with a linearisation process. We can perform a first order Taylor series

expansion of the constraint equation around ¥, to obtain:
9@ =di = g&) + 9 Tk — Vi) (11)
which indicates that:

9G¥ = di — g&) + 9 G (12)
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We now have an approximated nonlinear constraint that is equivalent to the linear constraint

Dy, =d; where D isreplaced with g'(¥,) and d, isreplaced withd, — g(¥,) + g' (¥ ) V-

In a realistic ground vehicle tracking scenario, each vehicle may undergo different regions with
different environmental conditions. Thus, one single model might not be able to accurately describe
various movement types in different environmental conditions. Considering that multiple state models
are involved, before performing the FMHE-MHT algorithm, it is required to determine the particular
state model which best fits to describe the vehicle movement. To this end, this work adopts the
Bayesian inference framework which utilises the posterior model probability to decide the appropriate
state model at each time step. The implementation of the Bayesian inference is done by interactive
multiple model particle filtering method (IMMPF) among others. The details for the IMMPF can be
found in [26].

IV. MHE-BASED TARGET TRACKING WITH ENVIRONMENTAL INFORMATION

Based on the domain knowledge aided dynamic modelling and measurements as mentioned in
the previous section, the MHE based optimization scheme is applied for the state estimation,
which is detailed as follows:

A. General Moving Horizon Estimation

By the original state model (1) and measurement model (5) without considering any environmental

information, the standard MHE is defined as an optimisation problem by the following form [9]:

k-1

min_ > (Il = G0l + 1) = Al ) +eew o)

k-1
{xk—N'{wi}j=k_N} j=k-N

for {xk_N,..,xk} € Cx (13)

where C, represents the constrained region which represents the feasible road region determined by the
road network in the ground vehicle tracking problem. {x;,_y..}is the ensemble of states from time
instance k — N to k which solves the quadratic programming problem (13) while giving the optimal
estimate solution. N is a moving horizon length which is chosen to give a trade-off between the
estimation accuracy and the computational cost. I},_y(xx_y) = —log(p(xk_NlYo:k_N_l)) represents
an arrival cost which plays an important role in summarising the effect of the past measurement as a

priori information on the initial state x; _y.
~ 2
Geen (pemn) = [|%peen = x?cn—hN”Pﬂ (14)
k=N

where X and P,_y represents the previous moving horizon state estimate and covariance at
k — N, respectively. The unconstrained extended Kalman filter (EKF) [9] is adopted as the
approximate method for calculating the arrival cost error covariance matrix P,., by using the
following update rule:



Poon = Q+FPey o F" —FPy yH'(R+HP_y H ) 'HP_y 1 F" (15)
where F and H represent the Jacobian matrix of the function f(x;) and h(x;) respectively.
The state estimate of the MHE optimisation function (13) at time k is denoted as

. k- . . . . . . .
x(k; Zi_n {wj}j=;—N)’ including the optimised initial state ®;_, and the optimised process noise

k-1 . . e L — . .
sequence {w,- ke’ The optimised estimated state X}, at time instance k considering a linear dynamic

system can be expressed as:

k-1

% = x (ks Xy (@), ) = F¥%iy + Z0L P @), (16)

j=k-N
B. Domain Knowledge aided Moving Horizon Estimation

Although the aforementioned MHE method could incorporate the constraint information for the

state estimation, it cannot exploit the environmental information in a comprehensive way:

i The interaction between the target and surrounding environment (e.g. a vehicle keeps
away from static/moving environmental objects, such as road boundary, another vehicle,
etc.) is not considered in the original MHE framework; and

ii. Domain knowledge is not considered in the measurement model.

To this end, a new framework of the MHE which fully exploits the domain knowledge (denoted as
DMHE for short) is proposed. Both the proposed state model (4), which considers the interaction
information and the projected measurement model (10) are used to construct a new MHE optimisation

function as:

min Z?:k—N+1("“U'"f(*&—l)"l(af)”Z—l*‘”7j“h(“ﬁ)”3—1)'+[k—N(xk—Nl

fe-1
{xk—N'{wj}j=k_N

for {xk_N,..,xk} € C.X" (17)
Compared with the MHE function in (13), besides the road constraint based information the domain

knowledge is better exploited from two aspects:

i anew I(af) term is introduced, which is related to the environmental force modelling
the interaction as mentioned previously. In this way, the interaction information is
considered in the MHE process; and

ii. the projected measurements ¥, and associated error covariance R are exploited to

better model measurement information

By solving the DMHE cost function (17), the optimised estimated state at time k can be obtained as:

%y = x (ks B, {a;f}j:;_N, {f;?'*};:;_N) = F¥%jy + Sty P (@) +1(a8Y)) (19)

Note that, a®* is a function of X}_, and {&‘)’f}lf_l , according to the force terms defined in (2) and
7 J)j=k-N

(3). The covariance required for the arrival cost computation as in (15) is modified by considering the
9



influence of the term I(aj) attime instance k by:

Py =

e e T
Q+ (F+ Vs 1(@5y_0)) Peewer (F+ Vs I(@5_y_))) —(F +
vi,*(_N_ll(ali—N—l))Pk—N—lHT(R +HPy_y_H") "HP_y_1 (F + V;,*k_N_ll(ai_N_l))T (19)

where Vs I(ay) represents the gradient of the term I(aj) with respectto Xj at time instance k.

C. DMHE-based Multiple Hypothesis Tracking (DMHE-MHT)

The proposed DMHE algorithm is further extended to address the data association problem by
incorporating it into a multiple hypothesis tracking (MHT) structure, which constructs a DMHE-MHT
framework for MTT in a more complicated scenario with both miss detections and false alarms.
Comparing with other data association algorithms, the multiple hypothesis tracking (MHT) has the
advantages of being able to deal with track creation, confirmation, occlusion and deletion in a
probabilistically consistent way and keeping a multiple number of past hypotheses between
consecutive time steps [22]. In this combined DMHE-MHT strategy, tracking association ambiguity
is handled by MHT data association. After measurements are associated with proper targets, vehicle
states are then estimated by the DMHE algorithms by exploiting the domain knowledge. The block
diagram of the DMHE-MHT algorithm is presented in Fig. 3.

Current New

Measurements -
Data association

Y Hypotheses
probability
Initialize Priori Measurement
Tarzgets —p GateCheck L, projection P | Assignment Matrix »  Generate k-best
/ Generator Hypotheses
/ F del
Road model o orce mode
- > state
transition o
prediction
Y
Hypotheses at time k
< Hypothesis Reduction
MHE Filter (merging)
\ Track Maintenance

Conformed Target estimated states

Hypotheses/Tracks ———»
(at time k-N)

Y

N-scan Pruning

Fig. 3 Flow diagram of DMHE-MHT algorithm.

Initially, let Y, = {yl"}:i"; denote the set of m;, measurements received at time k. Each measurement

has three possible hypotheses: i) the measurement starts a new target, ii) the measurement is a false
alarm, and iii) the measurement belongs to an existing target. The procedures of the DMHE-MHT are

divided into following steps.
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1) Gate Check: First, the distance between the predicted (prior) target position and the current
measurements is calculated. The prediction of target position is done by the Kalman filter time update,

and the distance is defined as the Mahalanobis distance as:

(s — )7k/k—1)T5k/k—1(3’rIfz - }7k/k—1) (20)

where yX is the m-th measurement at time k, Vi/k-1 Is the predicted target position and S/ Is
the covariance of innovation vector corresponding to the position. Note that the predicted position is
calculated by the forced-aided model (4) considering environmental interaction information. Gating is a
matrix of binary values which indicates the maximum possible distance between measurements and
targets. The measurements whose Mahalanobis distances with particular targets are smaller than a

particular threshold are used for the further data association.

2) Measurement projection: After the gating process, the candidate measurements within the gating
region are projected to the road using the process described in section IV considering road constraints.
The state dependent road model transition process is used to determine on which road the target is

moving. ¥ and R are calculated for the data association process.

3) State prediction: After determining on which road the target is moving, the corresponding
target-environment interaction force is calculated. The force-based state dynamic prediction is then

calculated which will be used in both data association and the MHE process.

4) Data association: The FDHE-MHT implements a similar data association process as the Reids
algorithm [18] with the projected measurement ¥, the constrained measurement error covariance R
and the forced-based state prediction. The assignment matrix is generated to represent all possible
target-to-measurement associations. Then, each new hypothesis contains a set of potential
target-to-measurement assignments, leading to an exhaustive process of enumerating all the possible
assignment combinations. To address this issue, the Murty’s algorithm [24] is used to find the k-best
assignment and new hypotheses generated from each parent hypothesis. To further reduce the
computational cost, a merging algorithm is also implemented to prevent hypotheses from being

considered if the ratio of their probability to the best hypothesis becomes too small.

5) Target Maintenance: In ground target tracking scenarios, vehicles may enter or leave the region of
interest during the tracking process. Moreover, occlusion or miss detection is also possible when a
vehicle is hidden behind other objects. Based on the data association results, we implement target
maintenance to identify targets which are entering, staying or leaving the tracking scene, by
considering three possible statuses for a set of targets: target initiation, confirmation/deletion and

maintenance.

e Target initiation: If the measurement is associated with a new target, then the new target hypothesis
appears in the current k-best hypotheses. A target lifetime index is added to the target with value 1.

e Target confirmation/deletion: The new target is confirmed only if the detected target appears along
the same track over a consecutive iteration of Ct (confirmation threshold) times. The lifetime index

11



is accumulated by 1 whenever the tentative target is detected and will become Ct when confirmed.
On the contrary, the lifetime index for any existing target is reduced by 1 whenever the target is not
associated with the current measurement and will be permanently deleted from the target list when

the lifetime is 0.

Target maintenance: The confirmed target may be temporally occluded or undetected by the sensor
without measurements being associated. For this situation, the track is updated according to the

predicted position of the target last associated states.

The high level logic for the DMHE-MHT target maintenance process is summarised in Table 1.

Table 1 High level logic for DMHE-MHT target maintenance.

-- At time k, for nExistedTarg number of existing target in a hypothesis
For k=1: nExistedTarg
(Case one: permanent deleted targets)
If Lifetime==
Continue; (the target is permanently deleted/already disappeared)
End
(Case two: target maintenance—target updating with measurement or
temporarily miss detection)
If Targ=asso (Target not associated with current measurement)
Lifetime=Lifetime-1;
If LifePoint>0
Implement force model based state prediction as DMHE estimation result
End
Else (Target associated with current measurement)
Implement DMHE update;
If Lifetime<MaxL.ifetime
Lifetime= Lifetime+1;
End
End
(Case three: target initialisation)
For k=1: nNewTarg (measurement is associated to a new target)
Use current measurement as initial position;
Lifetime=0;
End

6) DMHE filter: The details about implementing the DMHE for constrained target tracking based on

associated measurements have been discussed in previous section. Note that, in the original MHT, the

“filter” process is based on the KF consisting of: time update (i.e. prediction) and measurement update.

However, these two steps are combined in the DMHE and solved concurrently by the optimisation

process. The state estimation is determined online by solving a state estimation problem for a finite

horizon window.
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7) N-scan pruning: An N-scan pruning technique [24] is applied in the MHT structure to control the
complexity of the algorithm. The growing number of hypotheses is controlled by N-scan pruning
technique by keeping only the ones with the largest probability values (details as in [24]), while other
hypotheses with low probability are deleted after N-scan pruning. In the DMHE-MHT, the number of
N scans is chosen as the same value for the horizon length in the MHE.

V. NUMERICAL SIMULATION RESULTS

In this section, two simulation examples are presented in the context of ground vehicle tracking.
The first example is single target tracking, aiming at illustrating the proposed DMHE with both
linear and nonlinear inequality road constraint. The second one is a complex multiple vehicle
tracking scenario incorporating road inequality constraints from real world map data for the
DMHE-MHT.

A. Single Target Tracking

The proposed DMHE algorithm is evaluated by single target tracking scenario for both linear
(position) and nonlinear (bearing/range) measurement models with road boundary constraints. The
first one is a linear trajectory, considering a single carriageway with road width of 4 meters and an
angle of 45 degrees anticlockwise to the horizontal axis. The vehicle dynamics is described by a

constant velocity model with the noisy acceleration:

1T 00 [Tz/z 0
010 0 2

xk+1: 0 0 1 T xk+| 0 T /lek (21)
o001 |5 2]

where the state vector x; = [xyx, Xz, %1 X24] T consists of the vehicle position and velocity in x
and y directions, and T = 1 is the sampling interval, w, is a two-dimensional Gaussian process noise
with zero mean and covariance matrix Q = diag{5,2} in a local coordinate where diag{.} represents a
diagonal matrix. This covariance represents higher motion uncertainty along the centre line direction
and smaller uncertainty orthogonal to the road. The vehicle measurement model is a linear matrix in x
and y potion with a Gaussian measurement noise v, and covariance matrix R = diag{20//2, 20/v/2}
in a global Cartesian coordinate as:

1 0 00
Zy = [O 0 1 0] Xk + Vg- (22)
The vehicle has a centre line direction velocity of 10m/s with no initial lateral velocity and the initial

state is x, = [0,1502.83,7.0711,-7.0711] T

The movement of the target is constrained by road boundaries and supposed to follow the centre
line of the road. Different environmental forces are considered including lateral forces orthogonal to

the road as:

e Repulsive force generated from lower road boundary
13



£i7" = A-exp (%) my @)
e Repulsive force generated from upper road boundary
—dy
fl.rjpz =A-exp (Tb) nj; (24)
e  Attractive force to centre line of the road

_dcen er
5t = 4- (1 - exp (Ue2) @5)

where i and j represents the target and the environment (road boundary, centre line, and speed limit

where applicable), respectively. d;, and d,;, represent the Euclidean distance between lower and

predict
i

model (11) base on the current location, respectively. Similarly, d..n;er represents the distance

upper boundary of the road and the predicted vehicle position x calculated from the dynamic
between centre line and predicted vehicle position. Note that the closer (further) the vehicle gets to the
road boundaries (away from the centre line), the larger the repulsive (attractive) force will be

generated.

Beside above lateral forces, a velocity-based breaking (repulsive) force is also considered along
the centre line direction so as to present the road speed limitation:

iJj B

frep3 =—4- exp <—(Vlimit—vheading)) v (26)

Where Vneaaing = VX2 + ¥ is the speed of the vehicle towards heading direction. The speed
limitation vy, is defined as a valid speed interval around a specific speed value. And v
represents a unit velocity vector. Although the relative speed difference can be either positive or
negative, the repulsive effect is much larger when the vehicle exceeds the speed limit, as
illustrated in Fig. 4.

v
of
st
7+
6k
5t
4t
3t
; =
Vheading < Vlimit ~ Vheading =it
: ; ; l- vhegding — Viimit
-3 -2 -l | 2 3 a

Fig. 4 Force generated from the speed limitation.

To evaluate the performance, four different tracking models are compared: i) general MHE

without considering any environmental information (MHE), ii) force based MHE without

14



considering physical constraints (FMHE), iii) general MHE with inequality physical constraints
(road boundaries) (CMHE), and iv) the proposed DMHE approach. In Table 2, the performance of
different models is compared in terms of mean-square error (MSE) in three different aspects: i)
position MSE, ii) centre line tangential direction position MSE and iii) orthogonal position MSE to
the road with a horizon length of N=4. It is shown that road physical constraint is of great
importance when comparing the CMHE with the MHE and the DMHE with the DMHE, especially
in orthogonal direction where road boundary is considered. In addition to physical constraints,
environmental forces further improve the estimation accuracy. Both the FMHE and the DMHE

have shown a significant improvement for target’s position estimate compared with their relative
MHE and CMHE.

Table. 2 Estimation performance comparison of MHE, FMHE, CMHE, and DMHE.

MSE MHE FMHE CMHE DMHE
Position 7.0255 5.8592 6.1888 5.3900
Centre line direction 9.7958 8.7652 9.7223 8.6519
Orthogonal direction 8.3707 6.3303 2.6552 2.1281

In the second scenario, a vehicle is simulated to move along the quarter of a circular road with an
angular velocity of 0.1 rad/s along the road centreline for 15 seconds. Small noises are added to the
simulated vehicle position to represent the disturbance of the vehicle movement. The road has a width
of 4 meters and is defined by two arc boundaries of ;=96 m and r,=100 m, respectively, centred at
the origin of a Cartesian coordinate system, as shown in Fig. 5. The speed limit of this road
segment for the vehicle to keep is assumed to be 30 miles/hour.

100
90
80
70
E 60
S
s 50
[72]
o
e 40
30} | lowerboundary |- - - K
upper boundary : : \
20[ | ——@=—true trajectory |
10} ® measurement
0 ; ; ; ;
0 20 40 60 80 100

x-position(m)

Fig. 5 The simulated circular road tracking scenario.
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Regarding the range and bearing measurement model in (28), it is assumed that a radar sensor is
positioned at the origin. The corresponding measurement noise v, follows a Gaussian distribution
with zero mean and covariance R = diag{36,1072}.

N

arctan

Three algorithms are chosen for comparison for this simulated scenario including the EKF, the
constrained MHE (CMHE) which considers the road boundary constraint and the proposed DMHE.
For the EKF and the CMHE, the system dynamic model for tracking is the same as the previous
scenario. For the proposed DMHE method, additional interactions between the target and environment
are considered by using two forces: i) road repulsive forces generated by the road upper and lower
boundary and ii) force acting in the opposite of movement tangential direction to prevent the vehicle
from exceeding the speed limitation. For a fair comparison, all the algorithms are set to have the same
initial condition with mean x, = [75,0,10,10] T and covariance P, = diag{10,10,1,1}.

— boundary
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Fig. 6 True and estimated results for EKF, CMHE and DMHE.

Firstly, a sample tracking performance of three different algorithms is illustrated in Fig. 6. It
can be observed that the estimation result of the EKF is outside the road boundary. The
performance is improved in the CMHE with the tracking results being projected on the road boundary.
However, it is still quite different from the true trajectory. The most accurate and reasonable tracking
result is obtained by the DMHE. Next, we perform numerical evaluations on three algorithms
using the root mean square errors (RMSEs) through a hundred Monte Carlo simulations for the
same scenario. Figure 7 presents the averaged RMSE time history of the estimated position of each

filter (the sampling interval is 0.5s). It can be seen that the DMHE approach achieves the minimum
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RMSEs during the majority of times. Besides, the averaged RMSEs for the whole target trajectory
by different methods are presented in Table 3. Again, the DMHE achieves the most accurate
tracking performance. In comparison to the EKF and the CMHE, the averaged RMSE for position
estimation by the DMHE is improved by 66.8% and 27.7%, respectively.

14
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Fig. 7 RMSE of estimated position of EKF, CMHE and DMHE.

Table 3 Averaged RMSEs for position using EKF, CMHE and DMHE.

EKF CMHE DMHE

RMSE (m) 8.8261 4.0494 2.9281

B. Multiple target tracking

1) Simulation scenario: The performance of the DMHE-MHT is compared against the MHT, and
the constraint MHE-MHT for multiple target tracking. Three vehicles are simulated to move in a
realistic region (near Loughborough town in the UK, and the region’s geographic information is
obtained from the GIS). As shown in Fig. 8, we consider a road intersection scenario with a rectangular
region of surveillance, with an unknown and time varying number of targets observed in a clutter
environment. The vehicle dynamics is described the same as (21). The two-dimensional Gaussian
process noise has covariance matrix Q of 25 m/s?. Initially, two targets start moving in the
environment: vehicle 1 (shown as the red point) heads to the southwest direction with an initial speed
along road one of 12 m/s, it then crosses the intersection and travel on road 3; vehicle 2 (shown as the
black point) starts from road 4 heading to the northwest direction with an initial speed along the road
network of 8 m/s, it then crosses the intersection and travel on road 2. A new vehicle 3 starts to move
three seconds later from road 2 with initial speed of 8 m/s heading to southeast direction and then
change its direction at the intersection heading to northeast on road 1. As shown in Fig. 8, tracking
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ambiguity occurs during the process around the intersection and on road 1 and 2, which makes the

problem challenging.
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Fig. 8 Multiple target tracking scenario.

The target initial covariance is defined as P, = diag{100,100,25,25} for all three targets. Each
target is detected with a probability of P; = 0.98. Regarding the range and bearing measurement
model in (28), it is assumed that a radar sensor positioned at the bottom right corner. The
corresponding measurement noise v, follows a Gaussian distribution with zero mean and
covariance R = diag{25,2.573}. The detected measurements are immersed in a high clutter
environment that can be modelled as a Poisson distribution with clutter density of Bgs = 7.3 * 1075

(false alarms/area/scan) over the 1.375 * 10°m? region (i.e., clutter returns over the region of interest).

2) Domain knowledge exploitation: The speed limitations of the main road (road one and road
three along the east-west direction) and side road (road two and road four along the north-south
direction) are 40 miles/hour and 30 miles/hour, respectively. The road constraints are applied to
constrain the vehicle positions and measurements. In addition to physical constraints, different target
interactions with the environment are considered including interaction between: i) the vehicle and road
boundary, ii) the vehicle speed and speed limitation, and iii) vehicle in the minor road (2 and 4) and the
junction (the vehicle in the minor road will slow down when it approaches the junction). Besides, the
interactions between moving vehicles are also considered. These interactions are represented by forces,

which is defined below:

: ~dij ;
firjpz; _ {A exp( = )nji, if dij < D, 28)
’ 0, otherwise

where d;; represents the relative distance between vehicle i and vehicle j in a Cartesian coordinate. A

ij
threshold value D, is defined for interaction force so that repulsive behaviour is activated only if the

relative distance d;; is less than D;.

ij
3) Parameters setting for the MHE and the MHT: The lifetime threshold is defined as 5 in the
MHT implementation, which means any new target can only be confirmed if successfully detected in 5
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consecutive time steps. Similarly, tracking any existing target will be terminated after miss detection of
5 sequential time steps. The horizon length used in the MHE is set as 4 and so as for N-scan pruning.
Since only a small number of targets are considered in this study, at each time step, 3 new hypotheses
generated from one existing parent hypothesis are kept so as to reduce the computational cost.

The position estimates are shown in Fig. 9, and it can be shown that the road constraint and force
based interaction play a significant part for improving the tracking accuracy. By comparing Fig. 9(a)
and (b), we can find that map-based road boundary constraints improves the overall tracking results
significantly. Due to the inequality state constraints, the vehicle positions are constrained within the
road. The results get even better after introducing the force-based interaction information. In this case,
the estimated vehicle trajectories are not only within the road boundaries but also get closer to the real
trajectories. For further comparison between different algorithms, 50 trials of Monte-Carlo simulations
are performed. The performances of algorithms are measured using the root mean-square error
(RMSE). As shown in Table 4, the DMHE-MHT gives the best tracking results for all three targets by
considering both road boundary constraint and force-based interaction. A more remarkable
performance improvement is obtained for target 3 as it has the most interactions with the road and other
incoming vehicles.

The MHT, the constrained MHE-MHT and the proposed DMHT-MHE are also compared using
the optimal sub-pattern assignment metric (OSPA) [27]. The OSPA is proposed for evaluating the
performance of multiple target tracking algorithms, which considers not only the estimation
performance but also association accuracy. The OSPA metric computes the distance between two sets
of tracks by adding the error between target labels (or target indices) to the spatial distance. As can be
seen in Fig. 10, the DMHE-MHT has the smallest OSPA value, which represents the smallest
estimation error and least amount of incorrect data association. Besides, the proposed DMHE-MHT
algorithm performance is more stable than the others by observing the variation of the OSPA

distance over time, which presents the smoothest OSPA results.

Table 4 Averaged RMSEs for three vehicles by different approaches.

EKF-MHT MHE-MHT DMHE-MHT
Overall MSE position 8.9004 5.6353 5.0077
MSE for Target 1 6.9271 5.4747 5.1271
MSE for Target 2 8.7000 5.3629 4.8760
MSE for Target 3 11.0740 6.0683 5.0200
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Fig. 9 Multiple target tracking using EKF-MHT (a); MHE-MHT with road constraint (b); DMHE-MHT
with force interaction model and road constraint (c).

20



OSPA error metric for this test

T T T T

N
o

-
(5}
T

1

-
o
T

1

OSPA error metric (higher is worse)

> —%— MHT-EKF
—&— MHE-MHT
—#— DMHE-MHT
0 . \ ! ! !
0 5 10 15 20 25 30

Simulation step

Fig. 10 OSPA for different algorithms.

V1. CONCLUSIONS

This paper has proposed a new model-based ground vehicle tracking method considering domain
knowledge in a comprehensive way. In particular, the physical road constraint together with a
force-based dynamic model representing interactions between the target and the environment is used in
the DMHE target tracking approach. This DMHE is further extended to the DMHE-MHT to deal with
target association ambiguity, noisy measurements and multiple road model transition in multiple target
tracking. By comparing the DMHE-based approach with traditional constrained state estimation
methods using numerical simulation studies, it was shown that a significant improvement can be
obtained in terms of target position estimate. Besides, the simulation results also showed that the
proposed DMHE-MHT algorithm provides the most accurate tracking performance and robustness
for an unknown and time varying number of targets observed in clutter environment using real road

map constraint information and force-based target interaction information.
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