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Abstract— This paper proposes an environment-dependent vehicle dynamic modelling approach 

considering interactions between the noisy control input of a dynamic model and the environment in 

order to make best use of domain knowledge. Based on this modelling, a new domain knowledge-aided 

moving horizon estimation (DMHE) method is proposed for ground moving target tracking. The 

proposed method incorporates different types of domain knowledge in the estimation process 

considering both environmental physical constraints and interaction behaviours between targets and the 

environment. Furthermore, in order to deal with a data association ambiguity problem of multiple target 

tracking in a cluttered environment, the DMHE is combined with a multiple hypothesis tracking 

structure. Numerical simulation results show that the proposed DMHE-based method and its extension 

could achieve better performance than traditional tracking methods which utilise no domain knowledge 

or simple physical constraint information only.  

 

Index Terms—Multiple target tracking, domain knowledge, force-based model, moving 

horizon estimation (MHE), multiple hypothesis tracking (MHT).  

 

 

I.  INTRODUCTION 

Tracking multiple road users plays an important role in various applications such as surveillance, 

advanced driver assistance systems (ADAS) and autonomous vehicles. Many model-based state 

estimation methods have been proposed for target tracking. However, the majority of current methods 

assume an open field environment in which the tracked target(s) could move freely. This contradicts 

with the realistic scenario where the motion of the ground target(s) movement is often affected by its 

operational environment such as road and terrain. This information could be taken as domain 

knowledge and exploited in the development of tracking algorithms in order to enhance tracking 

quality and continuity. 
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The most apparent domain knowledge for ground vehicle tracking is the road constraint 

information such as the constrained region imposed by a road map. The studies on the road 

network-aided ground vehicle tracking have been reported in [1-6]. In these papers, the road network is 

taken as physical constraint information. Although comprehensive studies have been made for dealing 

with constraint information, limitations still exist. In particular, for a realistic tracking scenario, in 

addition to above physical road constraints, there are interactions between the target and its 

surrounding environment which need to be considered. For instance, the driver behaviours are affected 

by the surrounding environment and tend to obey the traffic rules. Drivers typically try to keep away 

from the road boundary while following the road/lane centre and the speed limit. They also anticipate 

potential collision risks with incoming cars and make avoidance manoeuvres whenever necessary.  

An accurate dynamic model reflecting the aforementioned realistic movement of a vehicle is vital to 

obtain good tracking performance, especially when limited or even no measurements are available. 

However, most of the current vehicle dynamic models for target tracking ([10, 11]) predict the target’s 

location from its past trajectory without fully taking into account the environmental interaction 

information. Recently, a social force model [12, 13] has been applied to model the interactions between 

pedestrians and environmental objects (building and walls) by using forces introduced by a potential 

field. These forces reflect different motion behaviours, for example, targets may be attracted to other 

objects or pushed away from them. However, the applications of the social force are limited to 

pedestrian tracking in the context of surveillance rather than vehicle tracking. 

With this background, we propose a new vehicle dynamic modelling approach and its application to 

the multiple target tracking (MTT) problem. The proposed modelling extends the traditional methods 

by incorporating the environmental information into the noisy control input of a dynamic model. The 

interaction between the target and the environment is modelled by virtual forces constructed by the 

target state, target dynamics and environment information. Compared with existing social force model 

used for pedestrian tracking [12, 13], the proposed model is more suitable for ground vehicle tracking 

involving much faster manoeuvres as it utilises the entire vehicle dynamic states (e.g. position and 

speed) and the predicted future position rather than using current position information only.  

Among various target estimation algorithms [7, 8], the optimisation-based moving horizon 

estimation (MHE) has a promising capability of being able to accommodate different types of 

constraints [9, 14, 25]. Thus, this study proposes a domain knowledge-aided MHE method (denoted as 

DMHE) by using the aforementioned vehicle dynamic model, which incorporates both the physical 

environmental constraints and interaction information into the tracking process in a comprehensive 

manner. The DMHE is further extended by combining with multiple hypothesis tracking (MHT), 

denoted as the DMHE-MHT, to deal with miss detection and false alarm considering a data association 

problem in a realistic multiple target tracking scenario. Note that, although miss detection and false 

alarms frequently occur in a cluttered environment, they have not been fully considered in most domain 

knowledge-aided tracking works [1-6]; only miss detection is considered in [2, 3]. In the proposed 

DMHE-MHT strategy, tracking association ambiguity is handled by the MHT concept which associates 

measurements with corresponding targets. The association results are then applied for the DMHE 
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optimisation function construction.  

This remaining part of this paper is structured as follows. The literature review on the associated 

problems in the domain knowledge aided MTT field is presented in Section II. The domain knowledge 

dependent dynamic and measurement model are proposed in Section III. Section IV explains the 

DMHE-based target tracking algorithm, as well as its extension by combing it with the MHT to solve 

the MTT problem. In order to verify the benefit and efficiency of the proposed algorithm, numerical 

simulation results are presented in Section V. Finally, conclusions are given in Section VI. 

 

II.  LITERATURE REVIEW 

  In this section, we review the MTT problem from its related three aspects: vehicle dynamic 

models, state estimation aided by domain knowledge (mainly the constraint information in the 

current works) and the data association:  

A. Vehicle dynamic models  

Various dynamic models can be generally divided into three categories: macroscopic, mesoscopic 

and microscopic models [28], [29]. In macroscopic models, the dynamics of the whole group of 

moving objects is described as an aggregate flow. Mesoscopic models determine the state of the system 

by the position or velocity distribution of each entity on the basis of aggregate relationships. 

Microscopic models refer to entities individually. In this case, the dynamics of every individual is 

considered by incorporating the social behaviour of each target taking into account the interaction 

between the target and environmental moving/static objects. This paper focuses on incorporating the 

environmental information in a target tracking problem using the concept of the microscopic model. 

Examples of microscopic models include car-following model [28], cellular automata model [29], 

optimisation-based models [30] and force-based models [12]. Among them, the force-based models 

have a great advantage of incorporating the environmental information as different sources of forces 

deterministically in a continuous model. 

B. Constrained state estimation  

 One of effective approaches to solve a road-constrained multiple target tracking (MTT) problem is 

to incorporate the constraint-related information into a standard filtering algorithm (i.e. state estimation 

process) as state constraints. Kalman filtering and its variations can be used to estimate the state of a 

target based on its dynamic and measurement models while considering limited constraint information. 

However, when the road state constraint types cannot fit easily into the structure of the Kalman filter 

(i.e., non-linear and inequality constraints), they are often ignored or dealt with heuristically [25]. 

Recently, some other methods, for instance the constrained Particle filters (PFs) and the constrained 

Gaussian mixture filters (GMF) (see [8], [9], [31], [32], for more details), are also developed based on 

optimisation and truncation approaches. The majority of filters proposed to solve the constrained 

estimation problems focus on linear (in)equality or nonlinear equality constraints. A little research has 

been conducted on nonlinear inequality constraints so far. However, nonlinear inequality constraints 



4 
 

(e.g. curved road boundary) are important and necessary for most tracking scenarios in ground vehicle 

tracking problems.  

 To address above issue, the moving horizon estimation (MHE) can be adopted, which proposed by 

Rao et al. [9] as a constrained state estimation method for nonlinear discrete-time systems. The basic 

strategy of the MHE is to reformulate the estimation problem as an optimisation problem using a 

fixed-size estimation window. Theoretically, for a linear system without constraints and with a 

quadratic cost, the MHE becomes the same as the Kalman filter when an infinite horizon window is 

considered. This method has been widely used in chemical engineering. Other applications include 

hybrid systems, distributed, network systems, and large-scale systems. However, the implementation of 

the moving horizon approach in vehicle target tracking is still relatively an uncharted area.  

 Advantages of the MHE for target tracking are manifolds. Firstly, since the method is based on 

optimisation, road or similar constraints can be naturally handled by the MHE as additional (non)linear 

and/or (in)equality constraints. In addition to state constraints, the MHE is also able to incorporate 

constraints on the process and/or observation noises for modelling bounded disturbance or truncated 

distribution/density representing the influence of the operation environment on vehicle movement such 

as acceleration and deceleration. Another advantage of using the MHE in target tracking is that it 

always considers a certain number of latest measurements. Such feature is very meaningful in target 

tracking especially when targets are occluded by each other or static obstacles which leads to no 

reliable measurement during certain time steps. Simulation results in [7], [8], [14] showed that MHE 

achieves the smallest estimation error for nonlinear systems and nonlinear constraints. It was also 

shown that the constrained MHE filter outperforms most of the other constrained algorithms (e.g. 

constrained particle filter, constrained unscented Kalman filter, etc.) in terms of estimation error while 

keeping an acceptable computational time for target tracking applications with a relatively simple 

implementation process.  

C. Data association 

Different techniques can be used to deal with the miss detections and false alarms for MTT data 

association problems; for example, Nearest Neighbour Standard Filter (NNSF) [15], Global Nearest 

Neighbour (GNN) approach [16], Joint Probabilistic Data Association (JPDA) [17], Multiple 

Hypothesis tracking (MHT) algorithm [18] and finite set statistics (FISST) [19]. Among them, the 

MHT is a complex approach that considers data association across multiple scans and multiple 

hypotheses. The MHT essentially keeps a set of multiple hypotheses, and the assignment ambiguity 

will be resolved in future when subsequent new observations are arrived. Hard decisions are not made 

until they are needed with sufficient information rather than just the current data frame; thus possible 

error association could be corrected when more evidences are obtained. Such features along with the 

dramatic increases in computational capabilities have made the MHT a preferred data association 

method for modern tracking systems [20]. 
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III.  ENVIRONMETAL INFORMATION AIDED DAYNAMIC AND MEASUREMENT MODEL 

A.  Environmental Information-Aided Dynamic Model 

First let us review the general dynamic model for target tracking problem: 

𝐱𝐤+𝟏 = 𝑓(𝐱𝐤) + 𝛚k                          (1) 

where 𝐱𝐤 represents the state vector, which usually includes the position and velocity for tracking 

problem. 𝛚k is generally known as the process noise and more specifically considered as noisy 

acceleration components that controls the dynamic evolution of 𝐱𝐤 and follows a certain type of 

distribution to represent uncertainty of a driver’s behaviour. 𝑓(∙) represents the system dynamic 

function which reflects a desired target dynamic type representing the state transition between 

consecutive time steps. According to [10], in most of the target tracking problems, the control term 𝛚k 

is modelled as a Gaussian distribution with zero mean and constant covariance matrix representing 

target movement uncertainty irrespective to the surrounding environment. However, in realistic 

tracking scenarios, targets’ movements are affected by the surrounding environment (e.g. road 

boundary, road centreline or speed limit). In other words, the vehicle noisy control input 𝛚k from 

uncertain driver behaviours is related with the environment.  

Therefore, this section proposes a new vehicle dynamic modelling approach which incorporates 

environmental information into the vehicle control input, inspired by the social force model [12, 21]. In 

the original social force model as in [12, 21], pedestrians are assumed moving with low and constant 

velocity in a short time interval and force is considered to be only related to the relative distance 

between pedestrian’s current position and other environmental objects. Compared with the human 

tracking scenario, our problem exhibits much more complex vehicle movements with high velocity. In 

this case, the force (control) term needs to consider not only position but velocity information and the 

desired dynamics of the vehicle. As illustrated in Fig. 1(a), the object j is assumed to perform a turning 

manoeuvre should receive a higher repulsive force than the object i because it will get closer to the 

boundary. Besides, forces should also relate to the magnitude of the velocity; for instance, if the 

velocity 𝒗𝑗 of the object j towards the road boundary becomes larger, a larger repulsive force should 

be imposed on the object.  

In the proposed dynamic model, both repulsive and attractive effects from the environment are 

considered where the repulsive (or attractive) force is modelled as a monotonously decreasing (or 

increasing) exponential function. According to the current state 𝐱𝐤 (including both position and 

velocity states) of the vehicle i, the predicted position 𝑥𝑖
𝑝𝑟𝑒𝑑𝑖𝑐𝑡

 is first calculated from the dynamic 

model determined by   𝑓(𝒙𝒌). In this way, the entire state and dynamic model information are 

incorporated. Then, the relative Euclidean distance 𝑑𝑖𝑗
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

 between 𝑥𝑖
𝑝𝑟𝑒𝑑𝑖𝑐𝑡

 and position of the 

object j (e.g. road boundary, road centreline or other vehicles) is estimated. The repulsive/attractive 

force between target i and object j can then be represented as: 

               𝒇𝑖,𝑗
𝑟𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒

= 𝐴 ∙ exp (
−𝑑𝑖𝑗

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

𝐵
)𝒏𝑗𝑖                   (2) 
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           𝒇𝑖,𝑗
𝑎𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑣𝑒 = 𝐴 ∙ (1 − exp (

−𝑑𝑖𝑗
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

𝐵
))𝒏𝑖𝑗                     (3) 

where A and B are positive constants representing the magnitude and range of the force, respectively. 

𝒏𝑖𝑗 is the normalised vector pointing form i to j.  

As shown in Fig. 1(b), it is assumed that there exist different forces acting on ego vehicle i 

generated by the surrounding environmental objects, such as the repulsive force 𝒇𝒊,𝒐  from road 

boundary o, attractive force 𝒇𝒊,𝒄 to the centreline c and the repulsive force 𝒇𝒊,𝒋 from another moving 

vehicle j to avoid a collision,  

These forces are summed to a net environmental force f ⅇ acting on the vehicle i, which can be 

incorporated into the dynamic model (1) as:  

𝒙𝑘+1 = 𝑓(𝒙𝑘) + 𝐼(𝒂 𝑘
𝑒 ) + 𝝎𝑘                           (4) 

where 𝒂 𝑘
𝑒 =

𝒇 𝑘
𝑒

𝑚
 represents the acceleration introduced by the environmental force. 𝐼(𝒂 𝑘

𝑒 ) is the 

function representing the influence of the acceleration 𝒂 𝑘
𝑒  on the vehicle dynamic model, which has 

different forms according to different representations of (1). 

 

(a) (b)

desired velocity 

 

Fig. 1 The influence of the environment on a moving target by forces: (a) different repulsive forces 𝒇𝑖,𝑜 

and 𝒇𝑗,𝑜 on objects i and j with different dynamics between T=t (when objects position are marked as 

green circles) and T=t+∆𝑡  (where objects position are marked as dash circles) (b) 𝑝𝑖  receives 

interaction force 𝒇𝑖,𝑗 from another vehicle, attractive force 𝒇𝑖,𝑐 from the centreline and repulsive 

force 𝒇𝑖,𝑜 from the road boundary. 

B.  Environmental Information-Aided Measurement Model 

For the model based tracking problem, usually measurements are associated with a measurement model 

which can be generally represented as: 

                            𝒚𝑘 = ℎ(𝒙𝑘) + 𝒗𝑘                                  (5) 

where 𝒚𝑘  is a measurement vector, ℎ(𝒙𝑘) is the measurement function and 𝒗𝑘  is zero mean 
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Gaussian noise of the measurement with the covariance 𝑅. 

  We assume that the ground vehicles only move within the road network region. This matches with a 

realistic scenario where road boundaries are considered as physical constrains and all drivers are 

supposed to move within the constraint region. Due to the limited tracking sensor’s capability, the 

received measurements usually contain noises as in (5), which make them not always stay on the road 

network and far away from the ground truth values. Such noisy measurements are usually known as 

false alarms in MTT which make data association process really difficult with tracking ambiguity 

problems. To this end, a pre-processing approach is used in this paper to project the raw measurements 

onto the constrained surface (road network) at each time step.  

    Assuming that that target vehicles are traveling on linear road following the centre line, the row 

measurement data 𝒚𝑘 could then be projected by the following linear equality constraint as:   

                            𝐷𝒚̃𝑘 = 𝒅𝑘                                   (6) 

where 𝐷  is a full-rank constraint matrix and 𝒅𝑘  is the constraint vector. 𝒚̃𝑘  is the projected 

(constrained) Cartesian measurement. Following [25], the expression of deriving constrained 

measurement 𝒚̃𝑘 by directly projecting the unconstrained Cartesian coordinate measurement 𝒚𝑘 onto 

the constraint surface is by solving the problem: 

        min𝒚̃𝑘
(𝒚̃𝑘 − 𝒚𝑘)𝑊(𝒚̃𝑘 − 𝒚𝑘)                 𝑠. 𝑡.                     𝐷𝒚̃𝑘 = 𝒅𝑘                      (7) 

where 𝑊 is a symmetric positive definite weighting matrix. In this work, it is chosen as 𝑊 = 𝑅 

following the mean square method, where 𝑅 is a measurement error covariance matrix of the original 

measurements. The solution of this problem is then given by: 

               𝒚̃𝑘 = 𝒚𝑘 − 𝑅 −𝟏𝐷 𝑻(𝐷𝑅−𝟏𝐷 𝑻)−1(𝐷𝒚𝑘 − 𝒅𝑘)                            (8) 

According to [25], the projected measurement error covariance matrix 𝑅̃ can be expressed as: 

      𝑅̃ = (𝐼 − 𝑅 −𝟏𝐷 𝑻(𝐷𝑅 −𝟏𝐷 𝑻)−1𝐷)𝑅(𝐼 − 𝑅 −𝟏𝐷 𝑻(𝐷𝑅 −𝟏𝐷 𝑻)−1𝐷)𝑻          (9) 

In this way, the measurement model is modified as: 

                                                                  𝒚̃𝑘 = [
𝑥𝑘

𝑦𝑘
] + 𝒗̃𝑘                                     (10) 

where 𝒚̃𝑘  is the projected measurement, [
𝑥𝑘

𝑦𝑘
]  represents the target position and 𝒗̃𝑘  is the 

measurement noise for the projected measurement with zeros mean and covariance 𝑹̃. 

For nonlinear road constraint 𝑔(𝒚̃𝑘) = 𝒅𝑘 , the development of the constrained measurement (10) as 

given above is still valid with a linearisation process. We can perform a first order Taylor series 

expansion of the constraint equation around 𝒚̃𝑘 to obtain:  

                𝑔(𝒚̃𝑘) = 𝒅𝑘 ≈ 𝑔(𝒚̃𝑘) + 𝑔′(𝒚̃𝑘)(𝒚𝑘 − 𝒚̃𝑘)                   (11) 

which indicates that: 

                𝑔′(𝒚̃𝑘)𝒚̃𝑘 ≈ 𝒅𝑘 − 𝑔(𝒚̃𝑘) + 𝑔′(𝒚̃𝑘)𝒚̃𝑘                       (12) 
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We now have an approximated nonlinear constraint that is equivalent to the linear constraint 

𝐷𝒚̃𝑘 = 𝒅𝑘 where 𝐷 is replaced with 𝑔′(𝒚̃𝑘) and 𝒅𝑘 is replaced with 𝒅𝑘 − 𝑔(𝒚̃𝑘) + 𝑔′(𝒚̃𝑘)𝒚̃𝑘.  

In a realistic ground vehicle tracking scenario, each vehicle may undergo different regions with 

different environmental conditions. Thus, one single model might not be able to accurately describe 

various movement types in different environmental conditions. Considering that multiple state models 

are involved, before performing the FMHE-MHT algorithm, it is required to determine the particular 

state model which best fits to describe the vehicle movement. To this end, this work adopts the 

Bayesian inference framework which utilises the posterior model probability to decide the appropriate 

state model at each time step. The implementation of the Bayesian inference is done by interactive 

multiple model particle filtering method (IMMPF) among others. The details for the IMMPF can be 

found in [26]. 

 

IV.  MHE-BASED TARGET TRACKING WITH ENVIRONMENTAL INFORMATION 

  Based on the domain knowledge aided dynamic modelling and measurements as mentioned in 

the previous section, the MHE based optimization scheme is applied for the state estimation, 

which is detailed as follows: 

A.  General Moving Horizon Estimation 

By the original state model (1) and measurement model (5) without considering any environmental 

information, the standard MHE is defined as an optimisation problem by the following form [9]: 

𝑚𝑖𝑛
{𝒙𝑘−𝑁,{𝜔𝑗}𝑗=𝑘−𝑁

𝑘−1
}

∑ (‖𝒙𝑗 − 𝑓(𝒙𝑗−1)‖𝑄−1

2
+ ‖𝒚𝑗 − ℎ(𝒙𝑗)‖𝑅−1

2
 )

𝑘−1

𝑗=𝑘−𝑁

+𝛤𝑘−𝑁(𝒙𝑘−𝑁),  

                                    for  {𝒙𝑘−𝑁 , . . , 𝒙𝑘} ∈ 𝐶𝑥              (13) 

where 𝐶𝑥  represents the constrained region which represents the feasible road region determined by the 

road network in the ground vehicle tracking problem. {𝒙𝑘−𝑁:𝑘} is the ensemble of states from time 

instance 𝑘 − 𝑁 to 𝑘 which solves the quadratic programming problem (13) while giving the optimal 

estimate solution. N is a moving horizon length which is chosen to give a trade-off between the 

estimation accuracy and the computational cost. 𝛤𝑘−𝑁(𝒙𝑘−𝑁) = − log(p(𝒙𝒌−𝑵|𝑌0:𝑘−𝑁−1)) represents 

an arrival cost which plays an important role in summarising the effect of the past measurement as a 

priori information on the initial state 𝒙𝑘−𝑁.  

              𝛤𝑘−𝑁(𝒙𝑘−𝑁) ≈ ‖𝒙𝑘−𝑁 − 𝒙𝑘−𝑁
𝑚ℎ ‖

𝑃𝑘−𝑁
−1

2
                       (14) 

where 𝒙𝑘−𝑁
𝑚ℎ  and 𝑃𝑘−𝑁  represents the previous moving horizon state estimate and covariance at 

𝑘 − 𝑁 , respectively. The unconstrained extended Kalman filter (EKF) [9] is adopted as the 

approximate method for calculating the arrival cost error covariance matrix 𝑃𝑘+1  by using the 

following update rule: 
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𝑃𝑘−𝑁 = 𝑄 + 𝐹𝑃𝑘−𝑁−1𝐹
𝑇   − 𝐹𝑃𝑘−𝑁−1𝐻

𝑇(𝑅 + 𝐻𝑃𝑘−𝑁−1𝐻
𝑇)−1𝐻𝑃𝑘−𝑁−1𝐹

𝑇       (15)  

where 𝐹 and 𝐻 represent the Jacobian matrix of the function 𝑓(𝒙𝑘) and ℎ(𝒙𝑘) respectively.    

  The state estimate of the MHE optimisation function (13) at time k is denoted as 

𝒙 (𝑘; 𝒙𝑘−𝑁
∗ , {𝜔̂𝑗

∗}
𝑗=𝑘−𝑁

𝑘−1
), including the optimised initial state 𝒙𝑘−𝑁

∗  and the optimised process noise 

sequence {𝝎̂𝑗
∗}

𝑗=𝑘−𝑁

𝑘−1
. The optimised estimated state 𝒙𝑘

∗  at time instance k considering a linear dynamic 

system can be expressed as: 

           𝒙𝑘
∗ = 𝒙(𝑘; 𝒙𝑘−𝑁

∗ , {𝜔̂𝑗
∗}

𝑗=𝑘−𝑁

𝑘−1
) = 𝐹𝑘𝒙𝑘−𝑁

∗ + ∑ 𝐹𝑘−𝑗−1𝝎̂𝑗
∗𝑘−1

𝑗=𝑘−𝑁 .          (16) 

B.  Domain Knowledge aided Moving Horizon Estimation  

Although the aforementioned MHE method could incorporate the constraint information for the 

state estimation, it cannot exploit the environmental information in a comprehensive way: 

i. The interaction between the target and surrounding environment (e.g. a vehicle keeps 

away from static/moving environmental objects, such as road boundary, another vehicle, 

etc.) is not considered in the original MHE framework; and 

ii. Domain knowledge is not considered in the measurement model. 

To this end, a new framework of the MHE which fully exploits the domain knowledge (denoted as 

DMHE for short) is proposed. Both the proposed state model (4), which considers the interaction 

information and the projected measurement model (10) are used to construct a new MHE optimisation 

function as:   

𝑚𝑖𝑛
{𝒙𝑘−𝑁,{𝝎𝑗}𝑗=𝑘−𝑁

𝑘−1
}

∑ (‖𝒙𝑗 − 𝑓(𝒙𝑗−1) − 𝐼(𝒂𝑗
𝑒)‖

𝑄−1

2
+ ‖𝒚̃𝑗 − ℎ(𝒙𝑗)‖𝑹̃−1

2
 )𝑘

𝑗=𝑘−𝑁+1 +𝛤𝑘−𝑁(𝒙𝑘−𝑁),                                                        

                                                                 for   {𝒙𝑘−𝑁 , . . , 𝒙𝑘} ∈ 𝐶𝑥.                       (17) 

Compared with the MHE function in (13), besides the road constraint based information the domain 

knowledge is better exploited from two aspects: 

i. a new 𝐼(𝒂𝑗
𝑒) term is introduced, which is related to the environmental force modelling 

the interaction as mentioned previously. In this way, the interaction information is 

considered in the MHE process; and 

ii. the projected measurements 𝒚̃𝑘  and associated error covariance 𝑅̃  are exploited to 

better model measurement information  

By solving the DMHE cost function (17), the optimised estimated state at time k can be obtained as: 

          𝒙𝑘
∗ ≔ 𝒙(𝑘; 𝒙𝑘−𝑁

∗ , {𝝎̂𝑗
∗}

𝑗=𝑘−𝑁

𝑘−1
, {𝒇𝑗

𝑒,∗}
𝑗=𝑘−𝑁

𝑘−1
) = 𝐹𝑘𝒙𝑘−𝑁

∗ + ∑ 𝐹𝑘−𝑗−1 (𝝎̂𝑗
∗ + 𝐼(𝒂𝑗

𝑒,∗))𝑘−1
𝑗=𝑘−𝑁      (18)                  

Note that, 𝒂𝑗
𝑒,∗

 is a function of 𝒙𝑘−𝑁
∗  and {𝝎̂𝑗

∗}
𝑗=𝑘−𝑁

𝑘−1
, according to the force terms defined in (2) and 

(3). The covariance required for the arrival cost computation as in (15) is modified by considering the 
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influence of the term 𝐼(𝒂𝑘
𝑒) at time instance k by: 

𝑃𝑘−𝑁 =

𝑄 + (𝐹 + ∇𝒙̂𝑘−𝑁−1
∗ 𝐼(𝒂𝑘−𝑁−1

𝑒 )) 𝑃𝑘−𝑁−1 (𝐹 + ∇𝒙̂𝑘−𝑁−1
∗ 𝐼(𝒂𝑘−𝑁−1

𝑒 ))
𝑇

  − (𝐹 +

∇𝒙̂𝑘−𝑁−1
∗ 𝐼(𝒂𝑘−𝑁−1

𝑒 ))𝑃𝑘−𝑁−1𝐻
𝑇(𝑅 + 𝐻𝑃𝑘−𝑁−1𝐻

𝑇)−1𝐻𝑃𝑘−𝑁−1(𝐹 + ∇𝒙̂𝑘−𝑁−1
∗ 𝐼(𝒂𝑘−𝑁−1

𝑒 ))𝑇       (19) 

where ∇𝒙̂𝑘
∗ 𝐼(𝒂𝑘

𝑒) represents the gradient of the term 𝐼(𝒂𝑘
𝑒) with respect to 𝒙𝑘

∗  at time instance k. 

C.  DMHE-based Multiple Hypothesis Tracking (DMHE-MHT)  

 The proposed DMHE algorithm is further extended to address the data association problem by 

incorporating it into a multiple hypothesis tracking (MHT) structure, which constructs a DMHE-MHT 

framework for MTT in a more complicated scenario with both miss detections and false alarms. 

Comparing with other data association algorithms, the multiple hypothesis tracking (MHT) has the 

advantages of being able to deal with track creation, confirmation, occlusion and deletion in a 

probabilistically consistent way and keeping a multiple number of past hypotheses between 

consecutive time steps [22].  In this combined DMHE-MHT strategy, tracking association ambiguity 

is handled by MHT data association. After measurements are associated with proper targets, vehicle 

states are then estimated by the DMHE algorithms by exploiting the domain knowledge. The block 

diagram of the DMHE-MHT algorithm is presented in Fig. 3. 

Initialize Priori 
Targets

Gate Check Assignment Matrix 
Generator

MHE Filter 

N-scan Pruning

Current New 
Measurements

Generate k-best 
Hypotheses

Hypothesis Reduction
(merging)

Hypotheses at time k

Conformed 
Hypotheses/Tracks 

(at time k-N)

Track Maintenance

Target estimated states

Hypotheses
probability

Data association

Measurement 
projection

Road model 
transition

Force model 
state 

prediction

 

Fig. 3 Flow diagram of DMHE-MHT algorithm. 

Initially, let 𝑌𝑘 = {𝑦𝑖
𝑘}

𝑖=1

𝑚𝑘
 denote the set of 𝑚𝑘 measurements received at time k. Each measurement 

has three possible hypotheses: i) the measurement starts a new target, ii) the measurement is a false 

alarm, and iii) the measurement belongs to an existing target. The procedures of the DMHE-MHT are 

divided into following steps. 
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1)  Gate Check: First, the distance between the predicted (prior) target position and the current 

measurements is calculated. The prediction of target position is done by the Kalman filter time update, 

and the distance is defined as the Mahalanobis distance as:  

            (𝑦𝑚
𝑘 − 𝑦̅𝑘∕𝑘−1)

𝑇
𝑆𝑘∕𝑘−1(𝑦𝑚

𝑘 − 𝑦̅𝑘∕𝑘−1)                       (20)  

where 𝑦𝑚
𝑘  is the m-th measurement at time k, 𝑦̅𝑘∕𝑘−1 is the predicted target position and 𝑆𝑘 𝑘⁄ −1 is 

the covariance of innovation vector corresponding to the position. Note that the predicted position is 

calculated by the forced-aided model (4) considering environmental interaction information. Gating is a 

matrix of binary values which indicates the maximum possible distance between measurements and 

targets. The measurements whose Mahalanobis distances with particular targets are smaller than a 

particular threshold are used for the further data association.   

2) Measurement projection: After the gating process, the candidate measurements within the gating 

region are projected to the road using the process described in section IV considering road constraints. 

The state dependent road model transition process is used to determine on which road the target is 

moving. 𝒚̃ and 𝑹̃ are calculated for the data association process. 

3) State prediction: After determining on which road the target is moving, the corresponding 

target-environment interaction force is calculated. The force-based state dynamic prediction is then 

calculated which will be used in both data association and the MHE process.  

4) Data association: The FDHE-MHT implements a similar data association process as the Reids 

algorithm [18] with the projected measurement  𝒚̃, the constrained measurement error covariance 𝑹̃ 

and the forced-based state prediction. The assignment matrix is generated to represent all possible 

target-to-measurement associations. Then, each new hypothesis contains a set of potential 

target-to-measurement assignments, leading to an exhaustive process of enumerating all the possible 

assignment combinations. To address this issue, the Murty’s algorithm [24] is used to find the k-best 

assignment and new hypotheses generated from each parent hypothesis. To further reduce the 

computational cost, a merging algorithm is also implemented to prevent hypotheses from being 

considered if the ratio of their probability to the best hypothesis becomes too small. 

5) Target Maintenance: In ground target tracking scenarios, vehicles may enter or leave the region of 

interest during the tracking process. Moreover, occlusion or miss detection is also possible when a 

vehicle is hidden behind other objects. Based on the data association results, we implement target 

maintenance to identify targets which are entering, staying or leaving the tracking scene, by 

considering three possible statuses for a set of targets: target initiation, confirmation/deletion and 

maintenance. 

 Target initiation: If the measurement is associated with a new target, then the new target hypothesis 

appears in the current k-best hypotheses. A target lifetime index is added to the target with value 1. 

 Target confirmation/deletion: The new target is confirmed only if the detected target appears along 

the same track over a consecutive iteration of Ct (confirmation threshold) times. The lifetime index 
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is accumulated by 1 whenever the tentative target is detected and will become Ct when confirmed. 

On the contrary, the lifetime index for any existing target is reduced by 1 whenever the target is not 

associated with the current measurement and will be permanently deleted from the target list when 

the lifetime is 0. 

 Target maintenance: The confirmed target may be temporally occluded or undetected by the sensor 

without measurements being associated. For this situation, the track is updated according to the 

predicted position of the target last associated states.  

The high level logic for the DMHE-MHT target maintenance process is summarised in Table 1.                    

Table 1 High level logic for DMHE-MHT target maintenance. 

-- At time k, for nExistedTarg number of existing target in a hypothesis 

For k=1: nExistedTarg   

      (Case one: permanent deleted targets)    

      If Lifetime== 0 

          Continue; (the target is permanently deleted/already disappeared) 

      End 

      (Case two: target maintenance—target updating with measurement or 

      temporarily miss detection) 

      If Targ≠asso (Target not associated with current measurement)  

          Lifetime=Lifetime-1; 

              If LifePoint>0 

                  Implement force model based state prediction as DMHE estimation result 

             End 

      Else (Target associated with current measurement) 

          Implement DMHE update; 

              If Lifetime<MaxLifetime 

                 Lifetime= Lifetime+1; 

             End 

      End    

      (Case three: target initialisation) 

 For k=1: nNewTarg (measurement is associated to a new target)               

        Use current measurement as initial position; 

        Lifetime=0; 

End 

6)  DMHE filter: The details about implementing the DMHE for constrained target tracking based on 

associated measurements have been discussed in previous section. Note that, in the original MHT, the 

‘filter’ process is based on the KF consisting of: time update (i.e. prediction) and measurement update. 

However, these two steps are combined in the DMHE and solved concurrently by the optimisation 

process. The state estimation is determined online by solving a state estimation problem for a finite 

horizon window.  
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7)  N-scan pruning: An N-scan pruning technique [24] is applied in the MHT structure to control the 

complexity of the algorithm. The growing number of hypotheses is controlled by N-scan pruning 

technique by keeping only the ones with the largest probability values (details as in [24]), while other 

hypotheses with low probability are deleted after N-scan pruning. In the DMHE-MHT, the number of 

N scans is chosen as the same value for the horizon length in the MHE.  

 

V.  NUMERICAL SIMULATION RESULTS 

In this section, two simulation examples are presented in the context of ground vehicle tracking. 

The first example is single target tracking, aiming at illustrating the proposed DMHE with both 

linear and nonlinear inequality road constraint. The second one is a complex multiple vehicle 

tracking scenario incorporating road inequality constraints from real world map data for the 

DMHE-MHT.  

A.  Single Target Tracking  

 The proposed DMHE algorithm is evaluated by single target tracking scenario for both linear 

(position) and nonlinear (bearing/range) measurement models with road boundary constraints. The 

first one is a linear trajectory, considering a single carriageway with road width of 4 meters and an 

angle of 45 degrees anticlockwise to the horizontal axis. The vehicle dynamics is described by a 

constant velocity model with the noisy acceleration: 

              𝑥𝑘+1 = [

1 𝑇 0 0
0 1 0 0
0 0 1 𝑇
0 0 0 1

] 𝑥𝑘 +

[
 
 
 
 𝑇

2
2⁄ 0

0 𝑇 2
2⁄

𝑇 0
0 𝑇 ]

 
 
 
 

𝜔𝑘                    (21) 

where the state vector 𝑥𝑘 = [𝑥1,𝑘, 𝑥2,𝑘 , 𝑥̇1,𝑘 , 𝑥̇2,𝑘] 
𝑇 consists of the vehicle position and velocity in x 

and y directions, and 𝑇 = 1 is the sampling interval, 𝜔𝑘 is a two-dimensional Gaussian process noise 

with zero mean and covariance matrix Q = diag{5,2} in a local coordinate where 𝑑𝑖𝑎𝑔{. } represents a 

diagonal matrix. This covariance represents higher motion uncertainty along the centre line direction 

and smaller uncertainty orthogonal to the road. The vehicle measurement model is a linear matrix in x 

and y potion with a Gaussian measurement noise 𝑣𝑘 and covariance matrix R = diag{20/√2, 20/√2} 

in a global Cartesian coordinate as: 

          𝑧𝑘 = [
1 0 0 0
0 0 1 0

] 𝑥𝑘 + 𝑣𝑘 .                           (22)                             

The vehicle has a centre line direction velocity of 10m/s with no initial lateral velocity and the initial 

state is 𝑥0 = [0, 1502.83, 7.0711, −7.0711] 𝑇.  

 The movement of the target is constrained by road boundaries and supposed to follow the centre 

line of the road. Different environmental forces are considered including lateral forces orthogonal to 

the road as: 

 Repulsive force generated from lower road boundary 
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       𝒇𝑖,𝑗
𝑟𝑒𝑝1

= 𝐴 ∙ exp (
−𝒅𝒍𝒃

𝐵
) 𝒏𝑗𝑖                           (23) 

 Repulsive force generated from upper road boundary 

  𝒇𝑖,𝑗
𝑟𝑒𝑝2

= 𝐴 ∙ exp (
−𝒅𝒖𝒃

𝐵
) 𝒏𝑗𝑖                          (24) 

 Attractive force to centre line of the road 

   𝒇𝑖,𝑗
𝑎𝑡𝑡 = 𝐴 ∙ (1 − exp (

−𝒅𝒄𝒆𝒏𝒕𝒆𝒓

𝐵
))𝒏𝑖𝑗                    (25) 

where i and j represents the target and the environment (road boundary, centre line, and speed limit 

where applicable), respectively. 𝒅𝒍𝒃 and 𝒅𝒖𝒃 represent the Euclidean distance between lower and 

upper boundary of the road and the predicted vehicle position 𝑥𝑖
𝑝𝑟𝑒𝑑𝑖𝑐𝑡

 calculated from the dynamic 

model (11) base on the current location, respectively. Similarly, 𝒅𝒄𝒆𝒏𝒕𝒆𝒓  represents the distance 

between centre line and predicted vehicle position. Note that the closer (further) the vehicle gets to the 

road boundaries (away from the centre line), the larger the repulsive (attractive) force will be 

generated.  

 Beside above lateral forces, a velocity-based breaking (repulsive) force is also considered along 

the centre line direction so as to present the road speed limitation: 

                  𝒇𝑖,𝑗
𝑟𝑒𝑝3

= −𝐴 ∙ exp (
−(𝒗𝒍𝒊𝒎𝒊𝒕−𝑣ℎ𝑒𝑎𝑑𝑖𝑛𝑔)

𝐵
) 𝒗                       (26) 

where 𝑣ℎ𝑒𝑎𝑑𝑖𝑛𝑔 = √𝑥̇𝑘
2 + 𝑦̇𝑘

2  is the speed of the vehicle towards heading direction. The speed 

limitation 𝒗𝒍𝒊𝒎𝒊𝒕  is defined as a valid speed interval around a specific speed value. And 𝒗 

represents a unit velocity vector. Although the relative speed difference can be either positive or 

negative, the repulsive effect is much larger when the vehicle exceeds the speed limit, as 

illustrated in Fig. 4. 

 

Fig. 4 Force generated from the speed limitation. 

 To evaluate the performance, four different tracking models are compared: i) general MHE 

without considering any environmental information (MHE), ii) force based MHE without 
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considering physical constraints (FMHE), iii) general MHE with inequality physical constraints 

(road boundaries) (CMHE), and iv) the proposed DMHE approach. In Table 2, the performance of 

different models is compared in terms of mean-square error (MSE) in three different aspects: i) 

position MSE, ii) centre line tangential direction position MSE and iii) orthogonal position MSE to 

the road with a horizon length of N=4. It is shown that road physical constraint is of great 

importance when comparing the CMHE with the MHE and the DMHE with the DMHE, especially 

in orthogonal direction where road boundary is considered. In addition to physical constraints, 

environmental forces further improve the estimation accuracy. Both the FMHE and the DMHE 

have shown a significant improvement for target’s position estimate compared with their relative 

MHE and CMHE. 

Table. 2 Estimation performance comparison of MHE, FMHE, CMHE, and DMHE. 

MSE MHE FMHE CMHE DMHE 

Position 7.0255  5.8592 6.1888 5.3900

Centre line direction 9.7958 8.7652 9.7223 8.6519

Orthogonal direction 8.3707 6.3303 2.6552 2.1281

In the second scenario, a vehicle is simulated to move along the quarter of a circular road with an 

angular velocity of 0.1 rad/s along the road centreline for 15 seconds. Small noises are added to the 

simulated vehicle position to represent the disturbance of the vehicle movement. The road has a width 

of 4 meters and is defined by two arc boundaries of 𝑟1=96 m and 𝑟2=100 m, respectively, centred at 

the origin of a Cartesian coordinate system, as shown in Fig. 5. The speed limit of this road 

segment for the vehicle to keep is assumed to be 30 miles/hour. 

 

Fig. 5 The simulated circular road tracking scenario. 
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Regarding the range and bearing measurement model in (28), it is assumed that a radar sensor is 

positioned at the origin. The corresponding measurement noise 𝒗𝑘 follows a Gaussian distribution 

with zero mean and covariance 𝑅 = 𝑑𝑖𝑎𝑔{36, 10−2}. 

                             𝒛𝑘 = [
√𝑥

1,𝑘+
2 𝑥2,𝑘

2

𝑎𝑟𝑐𝑡𝑎𝑛(
𝑥2,𝑘
𝑥1,𝑘

)
] + 𝒗𝑘.                             (27) 

Three algorithms are chosen for comparison for this simulated scenario including the EKF, the 

constrained MHE (CMHE) which considers the road boundary constraint and the proposed DMHE.  

For the EKF and the CMHE, the system dynamic model for tracking is the same as the previous 

scenario. For the proposed DMHE method, additional interactions between the target and environment 

are considered by using two forces: i) road repulsive forces generated by the road upper and lower 

boundary and ii) force acting in the opposite of movement tangential direction to prevent the vehicle 

from exceeding the speed limitation. For a fair comparison, all the algorithms are set to have the same 

initial condition with mean  𝒙0 = [75,0,10,10] 𝑇 and covariance 𝑃0 = 𝑑𝑖𝑎𝑔{10,10,1,1}. 

 

Fig. 6 True and estimated results for EKF, CMHE and DMHE. 

Firstly, a sample tracking performance of three different algorithms is illustrated in Fig. 6. It 

can be observed that the estimation result of the EKF is outside the road boundary. The 

performance is improved in the CMHE with the tracking results being projected on the road boundary. 

However, it is still quite different from the true trajectory. The most accurate and reasonable tracking 

result is obtained by the DMHE. Next, we perform numerical evaluations on three algorithms 

using the root mean square errors (RMSEs) through a hundred Monte Carlo simulations for the 

same scenario. Figure 7 presents the averaged RMSE time history of the estimated position of each 

filter (the sampling interval is 0.5s). It can be seen that the DMHE approach achieves the minimum 
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RMSEs during the majority of times. Besides, the averaged RMSEs for the whole target trajectory 

by different methods are presented in Table 3. Again, the DMHE achieves the most accurate 

tracking performance. In comparison to the EKF and the CMHE, the averaged RMSE for position 

estimation by the DMHE is improved by 66.8% and 27.7%, respectively. 

 

Fig. 7 RMSE of estimated position of EKF, CMHE and DMHE. 

 

Table 3 Averaged RMSEs for position using EKF, CMHE and DMHE.  

 

 

 

B. Multiple target tracking 

1) Simulation scenario: The performance of the DMHE-MHT is compared against the MHT, and 

the constraint MHE-MHT for multiple target tracking. Three vehicles are simulated to move in a 

realistic region (near Loughborough town in the UK, and the region’s geographic information is 

obtained from the GIS). As shown in Fig. 8, we consider a road intersection scenario with a rectangular 

region of surveillance, with an unknown and time varying number of targets observed in a clutter 

environment. The vehicle dynamics is described the same as (21). The two-dimensional Gaussian 

process noise has covariance matrix  𝑄 of 25 𝑚/𝑠2 . Initially, two targets start moving in the 

environment: vehicle 1 (shown as the red point) heads to the southwest direction with an initial speed 

along road one of 12 𝑚/𝑠, it then crosses the intersection and travel on road 3; vehicle 2 (shown as the 

black point) starts from road 4 heading to the northwest direction with an initial speed along the road 

network of 8 𝑚/𝑠, it then crosses the intersection and travel on road 2. A new vehicle 3 starts to move 

three seconds later from road 2 with initial speed of 8 𝑚/𝑠 heading to southeast direction and then 

change its direction at the intersection heading to northeast on road 1. As shown in Fig. 8, tracking 

 EKF CMHE DMHE 

RMSE (m) 8.8261 4.0494 2.9281 
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ambiguity occurs during the process around the intersection and on road 1 and 2, which makes the 

problem challenging. 

 

Fig. 8 Multiple target tracking scenario. 

The target initial covariance is defined as 𝑃  
0 = 𝑑𝑖𝑎𝑔{100,100,25,25} for all three targets. Each 

target is detected with a probability of  𝑃𝑑 = 0.98. Regarding the range and bearing measurement 

model in (28), it is assumed that a radar sensor positioned at the bottom right corner. The 

corresponding measurement noise 𝑣𝑘  follows a Gaussian distribution with zero mean and 

covariance  𝑅 = 𝑑𝑖𝑎𝑔{25, 2.5−3} . The detected measurements are immersed in a high clutter 

environment that can be modelled as a Poisson distribution with clutter density of βFA = 7.3 ∗ 10−5 

(false alarms/area/scan) over the 1.375 ∗ 105𝑚2 region (i.e., clutter returns over the region of interest).  

2) Domain knowledge exploitation: The speed limitations of the main road (road one and road 

three along the east-west direction) and side road (road two and road four along the north-south 

direction) are 40 miles/hour and 30 miles/hour, respectively. The road constraints are applied to 

constrain the vehicle positions and measurements. In addition to physical constraints, different target 

interactions with the environment are considered including interaction between: i) the vehicle and road 

boundary, ii) the vehicle speed and speed limitation, and iii) vehicle in the minor road (2 and 4) and the 

junction (the vehicle in the minor road will slow down when it approaches the junction). Besides, the 

interactions between moving vehicles are also considered. These interactions are represented by forces, 

which is defined below: 

    𝒇𝑖,𝑗
𝑟𝑒𝑝4

= {
𝐴 ∙ exp (

−𝒅𝒊𝒋

𝐵
)𝒏𝑗𝑖 ,      if  𝒅𝒊𝒋 ≤ 𝐷𝑡

0,                                 otherwise
                      (28) 

where 𝒅𝒊𝒋 represents the relative distance between vehicle i and vehicle j in a Cartesian coordinate. A 

threshold value 𝐷𝑡  is defined for interaction force so that repulsive behaviour is activated only if the 

relative distance 𝒅𝒊𝒋 is less than 𝐷𝑡.  

3) Parameters setting for the MHE and the MHT: The lifetime threshold is defined as 5 in the 

MHT implementation, which means any new target can only be confirmed if successfully detected in 5 
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consecutive time steps. Similarly, tracking any existing target will be terminated after miss detection of 

5 sequential time steps. The horizon length used in the MHE is set as 4 and so as for N-scan pruning. 

Since only a small number of targets are considered in this study, at each time step, 3 new hypotheses 

generated from one existing parent hypothesis are kept so as to reduce the computational cost.  

The position estimates are shown in Fig. 9, and it can be shown that the road constraint and force 

based interaction play a significant part for improving the tracking accuracy. By comparing Fig. 9(a) 

and (b), we can find that map-based road boundary constraints improves the overall tracking results 

significantly. Due to the inequality state constraints, the vehicle positions are constrained within the 

road. The results get even better after introducing the force-based interaction information. In this case, 

the estimated vehicle trajectories are not only within the road boundaries but also get closer to the real 

trajectories. For further comparison between different algorithms, 50 trials of Monte-Carlo simulations 

are performed. The performances of algorithms are measured using the root mean-square error 

(RMSE). As shown in Table 4, the DMHE-MHT gives the best tracking results for all three targets by 

considering both road boundary constraint and force-based interaction. A more remarkable 

performance improvement is obtained for target 3 as it has the most interactions with the road and other 

incoming vehicles.  

The MHT, the constrained MHE-MHT and the proposed DMHT-MHE are also compared using 

the optimal sub-pattern assignment metric (OSPA) [27]. The OSPA is proposed for evaluating the 

performance of multiple target tracking algorithms, which considers not only the estimation 

performance but also association accuracy. The OSPA metric computes the distance between two sets 

of tracks by adding the error between target labels (or target indices) to the spatial distance. As can be 

seen in Fig. 10, the DMHE-MHT has the smallest OSPA value, which represents the smallest 

estimation error and least amount of incorrect data association. Besides, the proposed DMHE-MHT 

algorithm performance is more stable than the others by observing the variation of the OSPA 

distance over time, which presents the smoothest OSPA results.  

 

Table 4 Averaged RMSEs for three vehicles by different approaches. 

 EKF-MHT MHE-MHT DMHE-MHT 

Overall MSE position 8.9004 5.6353 5.0077 

MSE for Target 1 6.9271 5.4747 5.1271 

MSE for Target 2 8.7000 5.3629 4.8760 

MSE for Target 3 11.0740 6.0683 5.0200 
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(a) 

 

(b) 

 

(c) 

Fig. 9 Multiple target tracking using EKF-MHT (a); MHE-MHT with road constraint (b); DMHE-MHT 

with force interaction model and road constraint (c). 
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Fig. 10 OSPA for different algorithms. 

 

VI.  CONCLUSIONS  

This paper has proposed a new model-based ground vehicle tracking method considering domain 

knowledge in a comprehensive way. In particular, the physical road constraint together with a 

force-based dynamic model representing interactions between the target and the environment is used in 

the DMHE target tracking approach. This DMHE is further extended to the DMHE-MHT to deal with 

target association ambiguity, noisy measurements and multiple road model transition in multiple target 

tracking. By comparing the DMHE-based approach with traditional constrained state estimation 

methods using numerical simulation studies, it was shown that a significant improvement can be 

obtained in terms of target position estimate. Besides, the simulation results also showed that the 

proposed DMHE-MHT algorithm provides the most accurate tracking performance and robustness 

for an unknown and time varying number of targets observed in clutter environment using real road 

map constraint information and force-based target interaction information. 
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