
Matthew Traylor, PhD*
Christopher D. Anderson,

MD, MMSc*
Robert Hurford, BMBS,

MSc
Steve Bevan, PhD
Hugh S. Markus, DM

Correspondence to
Dr. Traylor:
mt628@medschl.cam.ac.uk

Supplemental data
at Neurology.org

Oxidative phosphorylation and lacunar
stroke
Genome-wide enrichment analysis of common variants

ABSTRACT

Objective: We investigated whether oxidative phosphorylation (OXPHOS) abnormalities were
associated with lacunar stroke, hypothesizing that these would be more strongly associated in
patients with multiple lacunar infarcts and leukoaraiosis (LA).

Methods: In 1,012 MRI-confirmed lacunar stroke cases and 964 age-matched controls recruited
from general practice surgeries, we investigated associations between common genetic variants
within the OXPHOS pathway and lacunar stroke using a permutation-based enrichment approach.
Cases were phenotyped using MRI into those with multiple infarcts or LA (MLI/LA) and those with
isolated lacunar infarcts (ILI) based on the number of subcortical infarcts and degree of LA, using
the Fazekas grading. Using gene-level association statistics, we tested for enrichment of genes in
the OXPHOS pathway with all lacunar stroke and the 2 subtypes.

Results: There was a specific association with strong evidence of enrichment in the top 1% of
genes in the MLI/LA (subtype p 5 0.0017) but not in the ILI subtype (p 5 1). Genes in the top
percentile for the all lacunar stroke analysis were not significantly enriched (p 5 0.07).

Conclusions: Our results implicate the OXPHOS pathway in the pathogenesis of lacunar stroke,
and show the association is specific to patients with the MLI/LA subtype. They show that MRI-
based subtyping of lacunar stroke can provide insights into disease pathophysiology, and imply
that different radiologic subtypes of lacunar stroke subtypes have distinct underlying pathophys-
iologic processes. Neurology® 2016;86:141–145

GLOSSARY
GSEA 5 gene-set enrichment analysis algorithm; ILI 5 isolated lacunar infarct; LA 5 leukoaraiosis; LD 5 linkage disequilib-
rium; MELAS 5mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes;MLI 5multiple lacunar infarcts;
NO 5 nitric oxide; OXPHOS 5 oxidative phosphorylation; SNP 5 single nucleotide polymorphism.

Accumulating evidence suggests that changes in mitochondrial function influence risk of stroke,
particularly for the ischemic and hemorrhagic stroke subtypes arising from cerebral small vessel dis-
ease.1–3 The mitochondrial genome is essential for the assembly of the oxidative phosphorylation
(OXPHOS) apparatus, consisting of 5 protein complexes necessary for maintenance of aerobic
haemostasis.4 Genetic variants lying within genes encoding the OXPHOS apparatus, the majority
of which reside in the autosome, have been associated with risk of lacunar stroke and deep intra-
cerebral hemorrhage.1–3 Additionally, multiple rare disorders are caused by mutations in OXPHOS
genes,5 many of which result in stroke-like episodes, neurodegeneration, and leukoencephalopathies.

Neuropathologic studies suggest that lacunar stroke results from a number of differing vascular
pathologies, including focal atherosclerosis, often associated with isolated larger lacunar infarcts,
and a more diffuse arteriopathy, usually seen in hypertensive individuals.6 The diffuse arteriopathy
has been associated both pathologically and neuroradiologically with multiple lacunar infarcts, as
well as confluent leukoaraiosis (LA) on MRI.7 Given the considerations described above, one
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might hypothesize that genetic variation within
OXPHOS is more likely to be associated with
patients with LA or multiple infarcts.

We investigated whether common genetic
variants within the OXPHOS pathway were
involved in the pathogenesis of MRI-confirmed
lacunar stroke using a permutation-based enrich-
ment approach, evaluating the strength of
genetic associations within genes in the
OXPHOS complex compared to the back-
ground of random genes across the autosome,
and determining whether strength of any associ-
ations differed by lacunar stroke subtype.

METHODS Study population. A total of 1,029 Caucasian

patients with lacunar stroke, aged#70 years, were recruited from

72 specialist stroke centers throughout the United Kingdom

(supplementary material on the Neurology® Web site at

Neurology.org), between 2002 and 2012, as part of the Young

Lacunar Stroke DNA Resource. Lacunar stroke was defined as a

clinical lacunar syndrome,8 with an anatomically compatible

lesion on MRI seen as either acute on diffusion-weighted

imaging or low signal on T1 or fluid-attenuated inversion

recovery imaging and with diameter #15 mm. All patients

underwent full stroke investigation, including brain MRI,

imaging of the extracerebral arteries, arteries, and ECG.

Echocardiography was performed when appropriate. All MRIs

and clinical histories were reviewed centrally by one physician

(H.S.M.). Exclusion criteria were as follows: stenosis .50% in

the extracranial or intracranial cerebral vessels or previous carotid

endarterectomy; cardioembolic source of stroke, defined according

to the Trial of Org 10172 in Acute Stroke Treatment criteria9 as

high or moderate probability; cortical infarct on MRI; subcortical

infarct .15 mm in diameter, as these can be caused by embolic

mechanisms (striatocapsular infarcts); and any other specific cause

of stroke (e.g., lupus anticoagulant, cerebral vasculitis, dissection,

monogenic cause of stroke). All cases were screened for NOTCH3
cerebral autosomal dominant arteriopathy with subcortical infarcts

and leukoencephalopathy and Fabry disease mutations and positive

cases were excluded. An additional 82 Caucasian patients with

lacunar stroke were recruited from St. George’s Hospital,

London, as part of the GENESIS study. The same inclusion and

exclusion criteria were used as in the DNA-lacunar study except

that older patients were also included, and a similar investigation

protocol was used with all patients having brain MRI.

Unrelated Caucasian controls, free of clinical cerebrovascular

disease, were obtained by random sampling from general practice

lists from 4 sites in England and Scotland and chosen to match

the same geographical location as the patients. Sampling was

stratified for age and sex. All patients and controls underwent a

standardized clinical assessment and completed a standardized

study questionnaire with the same risk factor definitions as used

for the cases. MRI was not performed in controls.

Standard protocol approvals, registrations, and patient
consents. The study was approved by the Multi-Centre Research

Ethics Committee (04/MRE00/36) and informed consent was

obtained from all participants.

Subtyping of lacunar stroke. We used the Fazekas scale, a

semiquantitative rating scale that classifies LA into 4 groups ranging

from none (0) to severe (3), to grade the extent of LA on MRI.

Based on this grading, we separated the patients into 2 strata: (1)

isolated lacunar infarct (ILI): patients with only a single infarct

and mild or absent LA (Fazekas grade ,2); (2) multiple lacunar

infarcts (MLI)/LA: MLI or moderate to severe LA (Fazekas grade

$2).We randomly selected 20MRI scans to be graded for a second

time by the same rater. Perfect agreement was found in assignment

to either of the 2 groups (k5 1). In addition, to evaluate inter-rater

reliability, we randomly selected 40 scans, which were graded by a

second rater (R.H.). Perfect agreement was found between the 2

raters for allocation of lacunar subtype (k5 1). However, one scan

was graded MLI by one rater and LA by the other.

Genotyping and imputation. All included samples were geno-

typed on the Illumina (San Diego, CA) HumanExomeCore array.

Single nucleotide polymorphisms (SNPs) were excluded if they

had minor allele frequency ,0.01, had genotype missingness

.3%, had Hardy-Weinberg equilibrium p , 1e-6 in controls,

were strand ambiguous (A/T or C/G), or showed evidence of

differential missingness by case-control status (p , 0.05).

Individuals were excluded if they had missingness .3%, had

excess or reduced heterozygosity, showed evidence of relatedness

with another individual (pi-hat . 0.1875), or failed a sex check in

PLINK. To assess population ancestry, all individuals were merged

with the HapMap II populations (CEU, YRI, JPT 1 CHB). The

merged dataset was linkage disequilibrium (LD) pruned and regions

with long-range LD were removed. Ancestry-informative principal

components were determined using EIGENSTRAT’s smartpca

function.10 A total of 284 individuals were removed who did not

segregate with CEU HapMap II individuals. We then repeated

smartpca on the remaining Caucasian individuals. We removed

all individuals who were more than 6 standard deviations from

the mean on the first 2 principal components of the first 8

iterations of smartpca. The remaining 269,691 autosomal SNPs

and 2,603 individuals were then imputed to 1000 Genomes

phase 1 (March 2012)11: SHAPEIT v2 was used to phase the

haplotypes and IMPUTE v2.2.2 was used to perform the

imputation,12,13 resulting in 9,289,526 SNPs.

Enrichment analysis. We first tested genome-wide association

with each autosomal SNP, including the first 2 principal

components as covariates, using SNPTEST v.2.4. From the

genome-wide association statistics, we calculated gene-level statistics

for each autosomal gene using the VEGAS software package.14

VEGAS simulates SNP associations based on the LD structure of

each gene (650 Kb window) and calculates an empirical p value for
association of each gene with disease status based on the proportion of

simulations in which the sum of simulated SNP x2 statistics exceeds

the observed sum from the association results.

We then used the generated gene-level statistics to test for sig-

nificant enrichment of the OXPHOS genes compared to random

sets of genes of the same number. We obtained the gene-level re-

sults (from VEGAS) for all OXPHOS genes, and tabulated the

number of genes from the pathway in the top 1%, 5%, and

10% of all genes. We then generated 1,000 gene sets of the same

length, sampling randomly from all gene level results from

VEGAS (increased to 10,000 permutations for p , 0.05). We

calculated significance by determining the proportion of ran-

domly permuted gene sets in which as many or more genes were

from the given percentile of all genes. In addition, we used the

gene-set enrichment analysis algorithm (GSEA) to test for overall

enrichment across all genes, simulating as previously.15 We first

performed all analyses for all lacunar stroke cases vs controls, and

then for the 2 subtypes of ILI or MLI/LA vs controls (figure 1).

We set a significance threshold of p 5 0.0042, corresponding to

Bonferroni correction for the 12 analyses (3 phenotypes, 4 tests).

142 Neurology 86 January 12, 2016

ª 2015 American Academy of Neurology. Unauthorized reproduction of this article is prohibited.

http://neurology.org/lookup/doi/10.1212/WNL.0000000000002260


RESULTS Details of the study population are given
in table 1; 1,012 cases and 964 controls remained
after genotyping quality control steps, with 502
cases in the MLI/LA subtypes and 501 in the ILI
subtype; in 9 cases, clear separation into different
phenotypes was not possible based on brain imag-
ing. We calculated gene-based statistics for 17,656
autosomal genes in each of the analyses using
the VEGAS package.14 Using these gene-level
association statistics, we tested for enrichment of
genes in the OXPHOS pathway with lacunar
stroke. We found a near-significant enrichment
(p 5 0.07) of genes in the top percentile with all
lacunar stroke analysis (table 2). We then performed
secondary analyses in the MLI/LA and ILI subtypes.
This showed strong evidence of enrichment in the top
1% of genes with the MLI/LA subtype (p 5 0.0017).

Conversely, we found no association with the ILI
subtype (p 5 1). The OXPHOS genes in the top
1% for the MLI/LA subtyped consisted of
NDUFB2, SURF1, UQCRH, NDUFS1, and
ATP5I. Plots of the p values in these gene
regions by genomic position are provided in
figure e-1. We followed up our significant result
with MLI/LA by testing for enrichment in any of
the OXPHOS subcomplexes (table 2). However,
we could find no evidence that enrichment was
specific to any subcomplex. Indeed, the 5
OXPHOS genes in the top 1% for MLI/LA were
divided between OXPHOS subcomplexes: 2 were
in complex I (NDUFB2, NDUFS1), 1 was in
complex II (UQCRH), 1 was in complex IV
(SURF1), and 1 was in complex V (ATP5I). We
found no significant enrichment in the top 5% or
10% of genes, or when using the GSEA algorithm
(table 2).

DISCUSSION In this genome-wide enrichment
analysis of MRI-confirmed lacunar stroke cases and
age-matched controls, we evaluated an association
of the oxidative phosphorylation pathway with
lacunar stroke, finding an association in cases with
LA or multiple lacunar infarcts, with no evidence
for association in cases with isolated lacunar
infarcts. The present study extends the previous
findings by Anderson et al.,3 and defines the
phenotypes driving this previously reported genetic
association.

Although our approach highlights an aggregate
association and therefore cannot identify specific
causal genetic variants, these results have important
implications. First, they provide evidence for the
association of the OXPHOS pathway with lacunar
stroke, and importantly show that the association
is specific and limited to a subgroup of SVD pa-
tients, namely those with multiple lacunar in-
farcts/LA. Potential mechanisms by which
OXPHOS dysfunction increases risk of lacunar
stroke are numerous, including depletion of ATP,
generation of reactive oxygen species, alterations
in autophagy, or changes to cell signaling. Mito-
chondrial dysfunction and oxidative stress in endo-
thelial cells have been shown to result in increased
blood–brain barrier permeability, as well as to
increase the expression of adhesion molecules.16,17

One intriguing hypothesis is that mitochondrial
dysfunction leads to endothelial dysfunction
through nitric oxide (NO) dysregulation. A similar
effect has been seen in the mitochondrial encepha-
lomyopathy, lactic acidosis, and stroke-like episodes
(MELAS), where citrulline and arginine supple-
mentations have shown improved outcomes by
ameliorating NO production.18,19 Given that white

Figure 1 Flowchart of analyses performed

GWAS 5 genome-wide association study; ILI 5 isolated lacunar infarct; LA 5 leukoaraiosis;
LD 5 linkage disequilibrium; MLI 5 multiple lacunar infarcts; OXPHOS 5 oxidative phospho-
rylation pathway; SNP 5 single nucleotide polymorphism.
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matter disease imaging phenotypes are present in
both MELAS and our MLI/LA cohort, this latter
mechanism may deserve further scrutiny in func-
tional follow-up studies building on these results.

Second, our results highlight the importance of
careful subtyping of stroke cases, demonstrating
that detailed phenotyping with MRI can provide
valuable insights into disease pathogenesis. In this
case, subtyping lacunar strokes using a classification
scheme supported by previous histopathologic

assessments has allowed the detection of novel
associations between OXPHOS and MLI/LA. In
addition, our results have implications for patho-
genesis of small vessel disease as they imply that
pathologic differences between lacunar stroke sub-
types are due to distinct underlying pathophysio-
logic processes. Given that Biffi et al.20 further
tested shared OXPHOS associations between ische-
mic stroke and Alzheimer disease, additional studies
will be needed to determine whether the associa-
tions between OXPHOS genetic variation and
MLI/LA stroke can extend to neurodegenerative
disease as well, and whether OXPHOS abnormali-
ties are specific to MLI/LA or influence other man-
ifestations of cerebral small vessel disease such as
enlarged perivascular spaces and microbleeds.

This study has several strengths. All lacunar stroke
cases were MRI confirmed. All individuals, cases and
controls, were genotyped on the same genome-wide
association study array, which means that the results
are less likely to be confounded by technical artifacts.
Our study also has limitations. We were unable to
obtain MRIs in the control population for this analy-
sis. Population-based studies show that a subset of
these are likely to have some degree of small vessel dis-
ease. This may have some effect on our results, with
our results underestimating the true difference
between cases and controls. Second, no adequately
sized replication dataset with MRI-verified lacunar
stroke is currently available to replicate our findings,
so we were unable to independently validate our find-
ings. Similarly, our analysis was limited to individuals
of Caucasian ancestry from the United Kingdom.
Extension of this analysis to other populations will
be an important future development. Future studies
will be needed to independently replicate our find-
ings, and to identify specific causal variants and
how they lead to OXPHOS dysfunction. Finally,
we cannot identify whether specific cell types (i.e.,
endothelial cells, neurons, glia) are particularly
affected by the OXPHOS variants tested in this anal-
ysis, which would be helpful in planning functional
follow-up studies.
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Table 1 Cohort characteristics

All lacunar MLI/LA subtype ILI subtype Controls

No. 1,012 502 501 964

Age, y, mean (SD) 57.2 (9.6) 59.5 (9.1) 54.7 (9.2) 59.7 (4.3)

Male, % 69.8 71.6 68.3 52.5

Hypertension, % 70.8 79.2 62.9 53.3

Diabetes, % 16.7 19.0 14.2 7.7

Hyperlipidaemia, % 68.1 70.6 65.4 58.1

Ever smoker, % 69.6 75.0 64.1 56.0

Fazekas LA grade, mean (SD) 0.96 (1.07) 1.72 (1.00) 0.21 (0.42) NA

Abbreviations: ILI 5 isolated lacunar infarct; LA 5 leukoaraiosis; MLI 5 multiple lacunar
infarcts; NA 5 not applicable.

Table 2 Enrichment of oxidative phosphorylation pathway using permutation-
based approaches

Gene set Phenotype
Enrichment
at 1%

Enrichment
at 5%

Enrichment
at 10% GSEA

OXPHOS Lacunar
Stroke

0.07 0.27 0.43 0.05

MLI/LA 0.0017a 0.07 0.55 0.74

ILI 1 0.50 0.83 0.61

Complex I Lacunar
Stroke

0.32 — — —

MLI/LA 0.07 — — —

ILI 1 — — —

Complex II-III Lacunar
Stroke

0.14 — — —

MLI/LA 0.14 — — —

ILI subtype 1 — — —

Complex IV Lacunar
Stroke

1 — — —

MLI/LA 0.16 — — —

ILI 1 — — —

Complex V Lacunar
Stroke

0.12 — — —

MLI/LA 0.14 — — —

ILI 1 — — —

Abbreviations: GSEA 5 gene-set enrichment analysis algorithm; ILI 5 isolated lacunar
infarct; LA 5 leukoaraiosis; MLI 5 multiple lacunar infarcts; OXPHOS 5 oxidative phospho-
rylation pathway.
a Significant at p , 0.0042.
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