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ABSTRACT
With use cases that range from external localisation of sin-
gle robots or robotic swarms to self-localisation in marker-
augmented environments and simplifying perception by tag-
ging objects in a robot’s surrounding, fiducial markers have
a wide field of application in the robotic world. We propose a
new family of circular markers which allow for both compu-
tationally efficient detection, tracking and identification and
full 6D position estimation. At the core of the proposed ap-
proach lies the separation of the detection and identification
steps, with the former using computationally efficient circu-
lar marker detection and the latter utilising an open-ended
‘necklace encoding’, allowing scalability to a large number of
individual markers. While the proposed algorithm achieves
similar accuracy to other state-of-the-art methods, its ex-
perimental evaluation in realistic conditions demonstrates
that it can detect markers from larger distances while be-
ing up to two orders of magnitude faster than other state-
of-the art fiducial marker detection methods. In addition,
the entire system is available as an open-source package at
https://github.com/LCAS/whycon.

CCS Concepts
•Computing methodologies → Object detection; Track-
ing; Vision for robotics;
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1. INTRODUCTION
Although initially intended for Augmented Reality (AR)
applications, fiducial-based visual localisation systems are
broadly utilised in a number of areas throughout the field of
robotics where a robust and efficient full pose vision-based
estimation is required. Typical applications of such marker-
based systems include swarm and bio-inspired robotics [2, 3,
11], which requires reliable localisation of a large number of
robots from an external camera (see also Figure 1(e)), visual-
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(a) WhyCon (b) ARTags (c) AprilTag (d) WhyCode

(e) Swarm of robots tagged with WhyCode markers

Figure 1: Four types of fiducial markers: the state-
of-the-art WhyCon, ARTags, AprilTag and the pro-
posed WhyCode and a robotic swarm tagged with
the WhyCode markers.

servoing that requires highly precise robot motion [21, 26],
and semantic scene understanding [7], in which the scene
objects are tagged with the fiducial markers to mitigate the
limitations of general vision-based object recognition.

Both within these applications and more generally, visual
fiducial marker detection and tracking systems must ideally
fulfil to a high standard, the following requirements:

• Robustness: Markers must be robustly detectable
in adverse conditions such as when moving rapidly,
when at a considerable distance or when under varying
lighting conditions.

• Distinguishability: For fiducial markers to be used
for applications in which a single marker is not suffi-
cient, either because several robots need to be tracked
in parallel or several features in the environment need



to be identified simultaneously, it needs to robustly
identifiable and distinguishable to the vision system.
However, the number of markers required in these ap-
plications often varies considerably across application
domains. The tracking method must, therefore, be
able to scale accordingly to the requirements imposed
by the specific application or scenario.

• Economic Feasibility: To ensure the system is uni-
versally accessible, it should, ideally, utilise markers
which are cheap and easily producible in large quan-
tities, such as being printable on paper. This has the
added benefit of making the system not only cheap
to set up, but also cheap to use in conditions which
might otherwise deteriorate the markers such as use
with drones or in adverse weather conditions. The
system should also utilise standard, off-the-shelf sen-
sor(s) such as RGB and grey-scale cameras. All of
this, together with freely-available, open-source soft-
ware, makes them customisable, and thus, minimises
the cost for developers and researchers alike.

• Precision: Fiducial markers’ fundamental purpose is
to provide a precise position of a marked object within
an observed scene. This can come in the form of a 2D
location in an image or a 3D position in the scene.
Apart from identifying a 3D position, orientation in-
formation is often also desirable. Thus, most markers
often have properties that allow the estimation of their
full 6 degrees of freedom (DoF) pose.

In this paper, we propose a novel tracking system that can
generate suitable markers which can be easily printed on
paper, along with an integrated software component that
addresses the above requirements to a very hight standard.
This is achieved by extending an open-source detection sys-
tem for circular markers called WhyCon [12] by adding
a novel encoding based on the concept of Binary Neck-
laces [20], which we shall refer to as WhyCode. Necklaces
are a mathematical concept of combinatorics providing a
generator for rotation invariant, uniquely identifiable pat-
terns that can scale to a theoretically infinite number of
individual markers, similar to the one shown in Fig. 1(d).
The resulting markers are robustly and efficiently detectable
in the environment and also allowing for discrimination be-
tween individual markers using the Necklace coding. With
our extension of the original system we now present a 6-DoF
fiducial marker system. The performance of the proposed
system is demonstrated through a range of experiments
which compare the pre-existing WhyCon system against
the new WhyCode method, in addition to the frequently
used ARTags and AprilTag fiducial marker detection sys-
tems.

2. RELATED WORK
In response to the need for vision-based markers within
robotics, discussed above, several marker-based tracking and
identification methods have been developed. These can be
categorised into three groups: active markers, passive reflec-
tive markers and passive markers, depending on the type of
markers that each system uses.

In vision based systems, active markers contain a source
of light that can be tracked – this is often achieved using
an infra-red or ultraviolet LEDs, which are easy-to-detect
by cameras, but unobtrusive to humans. These systems
also achieve very low false positive rates, because the active
markers can emit unique identification codes, which makes
then almost impossible to confuse with other objects. Some
active marker systems are also capable of estimating the ori-
entation of a marker, but this is normally achieved by com-
bining the positions of a number of markers to calculate the
orientation, rather than retrieving the orientation of a sin-
gle marker. These systems, however, do offer sub-millimetre
precision for a marker’s location and their multicamera se-
tups offer extremely accurate tracking information [22].

Alternatively, passive reflective markers are a widely used
approach within the field, with the most common example
being the commercial motion capture system ViCon [24],
which combines high-resolution and high speed cameras that
utilise strong infra-red emitters. Systems like this also en-
able tracking with sub-millimetre precision but unlike ac-
tive marker systems, their fiducials do not contain electronic
components. They are instead often made from, or coated
with, materials that are highly IR reflective, allowing the
IR cameras to easily pick out the markers from a scene
even from high distances. This has the benefit of making
the markers cheaper and easier to deploy than active ones,
however, passive systems are problematic to deploy in ar-
eas under direct sunlight. Although both active and passive
reflective based systems offer a solid ground truth, these ap-
proaches remain very costly and are therefore not always an
appropriate solution.

These issues, however, have motivated the creation of a va-
riety of alternative low-cost tracking systems which focus on
the final category of fiducial markers: passive vision-based
tracking. With many of these newer methods utilising sim-
ple planar patterns, it is not only the cost that is significantly
lowered, but also the difficulty of use and set up time.

One of the most well-known passive markers is the QR Code.
This marker is predominantly designed to store information,
such as text and URLs, and consists of a two-dimensional
matrix barcode which encodes data in a pattern of black
and white squares. In-built error correction codes allow the
information to be correctly read, even if the marker is partly
damaged, although these characteristics do restrict the range
and angles from which the codes can be read. Consequently,
although there is the potential to use such markers as part
of a larger tracking system, their design makes them less
suitable for tracking than both the methods discussed below
and the proposed method.

Examples of passive markers which are more focused on the
tracking element are the augmented-reality markers. These,
although conceptually similar to the QR code mentioned
above, are designed to encode far smaller data payloads and
often use the ARTag [8] and ARToolKit+ [25] software li-
braries.

The current ARTags developed from these software libraries
utilises a square box fiducial marker which encodes informa-
tion through the use of a large 2D black and white bar code.
The real time performance of the system, coupled with its



accuracy and robust nature, make it an ideal candidate for
a comparison to the proposed system.

Another augmented-reality alternative that will also be com-
pared is the AprilTag [18] system. Using the square marker
design with a 2D bar code, the AprilTag also stems from
a lexicographic coding system [23] and is therefore able to
be detected at both short and long range. Computational
simplicity is, however, sacrificed.

The success of square markers within this field is evident,
however, the use of circular markers is quickly becoming
a regular occurrence in many applications. This is largely
due to the need to counter the expensive operation required
to correct the shifting of the centroid of a square marker
under perspective transformation. Many systems, includ-
ing the SyRoTek e-learning platform [14], which uses ring-
shaped patterns with binary tags and [26], a planar pattern
which consists of the letter ’H’ surrounded by a ring, utilise
circular markers due to the less expensive centroid opera-
tion. In the latter system, the pattern is first detected using
adaptive thresholding and is later processed for connected
component labelling. To establish whether the marker has
been correctly tracked, its geometric properties are tested
and the false matches are discarded. A Canny edge detector
and ellipse fitting method are then applied to the positive
matches.

Another system built upon the same methodology as the
ARToolKit and ARTags is ArUco [10], which boasts a robust
ID system with an error correction technique that can handle
up to 1024 individual codes. The detection process within
the ArUco system combines contour extraction and code
identification with the aforementioned adaptive thresholding
step and thus can determine the extrinsic parameters of the
marker using the intrinsic camera parameters.

Finally, a system relatively similar to the proposed markers,
that comprises a number of concentric circles broken into
several angular regions and coloured either black or white,
is the TRIP localisation system [6], which is able to distin-
guish between 39 patterns. Similarly to the ArUco system
mentioned above, the TRIP localisation system also appro-
priates an adaptive thresholding method, with the system as
a whole extracting the edges of the markers and processing
the edges which correspond to the circular border of the ring
patterns. The main disadvantage accompanying this system
is the computational cost, as the adaptive thresholding and
ellipse fitting are computationally expensive. On the other
hand, the system’s ability to achieve a precision of between
1% and 3% of relative error may be said to counteract this
disadvantage.

The aforementioned methods are widely considered to be the
state-of-the-art methods currently existing within the field.
Despite this, the real-world performance and low computa-
tional cost of the method proposed here makes it potentially
superior in several application domains. The ability to ex-
pand the recognisable patterns by incorporating a scalable
identification code makes the proposed method preferable
in cases when one needs a computationally efficient method
to detect, localise and identify a larger number of fiducial
markers.

Figure 2: Overview of the approach.

3. CONCEPT
The proposed system builds upon the strengths of the orig-
inal WhyCon system, with the general conceptual design
indicated in Fig. 2. Oncoming images are analysed follow-
ing the original WhyCon approach, searching for circular
patterns as detailed in Sec. 4. One the main advantages of
the WhyCon system is its ability to start searching for a
marker from any position in the image without any perfor-
mance penalty. Thus, the use of the tracking information
to predict the next position of the marker in the image re-
sults in a significant performance boost – in case when the
prediction is correct, the method processes only those pixels
that belong to the marker. Apart from the computational
performance boost, the tracking also allows the system to
employ Bayesian methods, which enhance the robustness of
the system to marker misidentification by taking into ac-
count the markers’ identification history. The robustness of
marker identification can be further improved by employ-
ing self-corrective codes on top of the necklace encoding.
The motion prediction, that speeds up the image process-
ing, self-corrective codes that detect misidentified markers,
and a Bayesian state estimation that improves the identifi-
cation robustness, are the main improvements to the system
originally described in [16]. With these improvements the
system presented outperforms its earlier versions [16, 13] in
terms computational efficiency, orientation estimation accu-
racy and identification reliability.

4. DETECTION & LOCALISATION
The WhyCon algorithm was originally intended to localise
a large number of concentric black and white circles, of
known diameter, in a computationally efficient way. The ar-
ticle [13] shows that the method achieves the same precision
as state-of-the-art black and white pattern detectors while
being faster by an order of magnitude. To detect the circu-
lar pattern, the algorithm searches an image using a com-
bination of flood-fill technique and on-demand thresholding,
while gathering statistical information about the patterns on
the fly. The statistics gathered allow rapidly identified false
candidates to be rejected early in the processing pipeline.
One of the key enabling factors in the computational sim-
plicity of the proposed system is that the pattern search can
be initiated from any position within the image. By com-
bined this with efficient tracking, the algorithm is typically
able to process only the pixels that are occupied by the pat-



terns, leading to significant performance boosts.

For the initial pattern detection phases, the image is searched
for a continuous segment of black pixels, which are classified
by an adaptive thresholding method that ensures a good
level of robustness to adverse lighting conditions. Once a
continuous segment of black pixels is found by the flood-fill
method, a simple circularity test can be performed.

A pattern consisting of s pixels, with bounding box dimen-
sions bu, bv and inner and outer diameters di, do is consid-
ered circular if its ‘roundness’ ρout is smaller than a prede-
fined value ρmax, i.e.

ρmax > |ρout| =
∣∣∣∣ π4sbubv d2o − d2id2o

− 1

∣∣∣∣ . (1)

Once the black segment passes the circularity test, a new
flood-fill search is initiated to locate the inner white seg-
ment. Once the inner segment is found, the algorithm then
compares the position of the inner and outer segments’ cen-
tre points to verify that the segments are concentric. From
here, the algorithm then calculates the ratio of inner and
outer segments’ pixels to verify that this ratio conforms to
the known ratio of the black and white segments’ areas.

After passing these tests, the positions of the segments’ pix-
els ui, vi that were stored during the flood-fill search are used
to calculate the pattern’s centre u, v and covariance matrix
C as follows:

C =
1

s

s−1∑
i=0

(
uiui uivi
uivi vivi

)
−
(
uu uv
uv vv

)
. (2)

Note that ui, vi are integers, and the computationally most
expensive part of Equation 2 is calculated using integer
arithmetic. The ui, vi and C actually represent an ellip-
tical projection of the pattern in the image.

Then, the eigenvalues λ0, λ1 and eigenvectors v0, v1 of the
covariance matrix C are calculated and used to determine
ellipse semiaxes e0, e1 as follows:

e0 = 2λ
1
2
0 v0,

e1 = 2λ
1
2
1 v1.

(3)

As the length of the ellipse semiaxes is now know, a final
segment test can be performed, which verifies if the number
of pixels s corresponds to the area of the ellipse:

ξ > |πe0e1/s− 1| . (4)

The constant ξ represents a tolerance value much lower than
ρmax, because the ellipse dimensions e0, e1 are obtained from
the covariance matrix with sub-pixel precision. If the de-
tected segments satisfy Equation 3, they are assumed to
represent the pattern. The obtained eigenvalues and eigen-
vectors are then used to calculate the spatial position of the
pattern.

To obtain the relative distance of the pattern, the pixel coor-
dinates of the ellipse (co-)vertices are calculated and trans-
formed into canonical camera coordinates using the intrin-
sic camera parameters that were obtained through standard
camera calibration procedure. The transformed coordinates
of the (co-)vertices are used to calculate the centre and axes

of the ellipse in the canonical camera form. The vertices are
used to calculate a conic Q such that all the ellipse points
u′, v′ satisfy  u′

v′

1

T

Q

 u′

v′

1

 = 0. (5)

Then, we calculate the eigenvalues λ0, λ1, λ2 and eigenvec-
tors q0, q1, q2 of the conic Q and use them to obtain the spa-
tial position of the pattern by the method presented in [26]:

x =
do√
−λ0λ2

(
s1q0λ2

√
λ0 − λ1

λ0 − λ2
+ s2q2λ0

√
λ1 − λ2

λ0 − λ2

)
,

(6)
where do is the circular pattern diameter.

In this work, we also implement a calculation of the patterns
orientation. At first, we calculate the normal t by

t =

(
s1q0

√
λ0 − λ1

λ0 − λ2
+ s2q2

√
λ1 − λ2

λ0 − λ2

)
. (7)

Note that the constants s1 and s2 are undetermined signs
that have to be selected so that the n points towards the
camera and x is in front of it. In other words, s1 and s2 are
chosen so that the inequalities:

n(0, 0, 1)T < 0
x(0, 0, 1)T > 0

(8)

are satisfied. While the roll and pitch of the pattern can
be expressed from the normal n, the yaw of the original
circular marker can not be determined. However, the yaw
can be calculated in the subsequent step, which uses the
Necklace encoding for the pattern identification.

4.1 Motion Prediction
As mentioned before, the flood-fill procedure, which consti-
tutes the core of the segmentation, can be initiated from any
point in the image being analysed.

If initiated near, or ideally inside of, the searched pattern,
the method will process only the pixels of the pattern itself,
which significantly reduces image processing time. Thus,
the method’s computational efficiency relies on its ability
to reuse the patterns past movement information to cor-
rectly predict its position in the image currently being pro-
cessed. In the earlier versions of the system, the search
simply started at the pattern’s position in the last analysed
image. While this is sufficient for slowly moving targets,
(e.g. in swarm robotics experiments [3]), rapidly moving
robots require the system to take into account their velocity
in order to maximise the tracking performance [19]. Thus,
the motion prediction presented in this work uses several
past detections of the pattern to estimate its velocity in im-
age coordinates. The last estimated velocity along with the
last detected position are then used to predict the position
of the pattern in the currently processed image. The ex-
periments described in 6.7 indicates when tracking rapidly
moving targets, the average image processing time can be
reduced by more than ∼20%.



4.2 Automatic Parameter Tuning
Apart from tracking, the swiftness of the system depends on
its ability to quickly reject false pattern candidates based
on on-the-fly-calculated statistics. However, the decision to
reject a segment in each statistical test (e.g. (1) or (4))
requires setting a certain tolerance range. This, in turn,
rises the need to set these tolerance values depending on
a particular application and hardware used. For example,
rolling cameras on a quadrotor suffer from a specific ‘jitter’
or ‘trembling’ noise, caused by vibrations induced by the
drone’s motors [1], which makes the segments appear de-
formed and non-circular. This requires ξ value in Eq. 4 to
be relaxed in order to work. Another tolerance value that
is affected by hardware used is the expected ratio of black
and white pixels in the segment – this is subject to non-
linear sensitivity and chromatic aberration of the camera
which also depend on the current lighting conditions. To
cope with the dependence of these tolerances on the hard-
ware used and current illumination conditions, we employed
a simple scheme, which slowly adapts these tolerances to
the values that the system experiences during its operation.
In particular, if the detection of a given pattern is success-
ful, the expected black-to-white pixel ratio bexp is updates
as follows: bexp → 0.99 bexp + 0.01 breal, where breal is the
value calculated by the segmentation method. The other
parameters, ρ, ξ etc. are updated analogously.

5. MARKER IDENTIFICATION
Building upon the good detection performance of the Why-
Con system, and adhering to the requirement outlined in
the introduction, our development of a new marker system
focused on creating a marker which is compatible with the
circular features of WhyCon, but also capable of provid-
ing a scalable encoding system to uniquely identify each
marker. The proposed encoding chosen for the WhyCode
marker was originally identified within the combinatorics
field of mathematics, and currently used widely in the fields
of combinatorial chemistry [4] and computational biology [5].
These sequence patterns known as Necklaces are “lexico-
graphically the smallest element in an equivalence class of
strings under string rotation” [20].

Despite it currently not being used in the field of robotics,
this encoding was a highly suitable option for the pro-
posed system due to its rotational invariant nature. By bit-
rotating the detected sequence until its lowest binary value
is reached, the system is able to identify a starting point re-
gardless of the position from which the code was originally
read from. This technique of altering the detected code with-
out confusing the IDs is the core concept being identifying
the markers’ yaw rotation. Taking the number of rotations
required to reach the lowest binary value, we are able to
identify how far rotated the marker is, from a ‘zero point’
of rotation, circumventing the issue of identifying a starting
point on a circular marker. This rotation can then be trans-
formed into 3D space to calculate the marker’s yaw rotation,
making the markers position detectable in a full 6th DoF. As
the ID is encoded by bit-rotating each number to their lowest
binary value, both the ID calculation and subsequent yaw
rotation can both be pre-calculated and stored to minimise
computational costs, thus improve the performance of the

system. However, for this to work reliably all codes which
have rotational symmetry, must also be removed from the
encoding system, as they allow for the lowest binary value to
be reached from multiple start locations, which would result
in ambiguity when establishing the markers’ yaw. To see an
example of a marker with ambiguous yaw, see the leftmost
quad-copter on Figure 1(e).

Value 1 Value 1 Value 1 Value 0 Value 0 Value 0

Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5

1 1 1 0 0 0

0 0 0 1 1 1

ID 4 + 3 bit shifts

Figure 3: An example of how the Manchester En-
coding is used with the Necklace System: The in-
ner circle of the WhyCode marker encodes a bi-
nary string which is bit-rotated to match a Necklace
code. Apart from identification, the number of bit-
rotations allows us to identify the marker’s rotation.

To create a system which reliability identifies the markers
and preserves backward compatibility with the WhyCon
marker, we encoded the Necklace-based ID into the inner
circle of the tags and used Manchester Encoding [9]. Thus,
each individual bit of the Necklace code is encoded by two
consecutive segments of opposite colour, as demonstrated in
Figure 3. Although the use of Manchester Encoding halves
the number of segments available on the marker, it allows us
to calculate an identification confidence rating based on the
expected number of pixels in each segment of the Necklace
code.

In theory, the Necklace Encoding supports higher than bi-
nary bases, and it would be possible to encode the marker
IDs in grey-scale values along the inner rim of the cir-
cle. However, preliminary tests showed that the edge-based
Manchester Encoding is more suitable due to its robustness.
This has the benefit of making the system more robust,
especially when subject to various lighting condition, but
does have the negative effect of only allowing binary-code
sequences when encoding IDs. As a result, this restricts the
encoding system and limits the number of potential IDs to:

N =
1

n

n∑
d=1

ϕ(d)2n/d, (9)

where ϕ() is totient function [15] and n is the Necklace code
length in bits. The Equation 9 is further illustrated in Ta-
ble 1 which shows the number of combinations valid for the
proposed marker, given that the Necklace code consists of a
sequence of n bits:

5.1 Identification Uncertainty Handling
Decoding the ID actually requires that one establishes cor-
rectly the falling and rising edges of the Manchester code
that is encoded in the inner circle of the pattern, see 3.



Table 1: Necklace code length in bits and corre-
sponding number of unique marker identities

Code length [bit] 4 6 8 10 12 14 16

Unique IDs [-] 3 9 30 99 335 979 2623

Thus, the intensity of these edges in the image actually cor-
responds to the quality of the decoding ring image. If the
pattern is close to the camera, one can expect that these
edges are prominent. However, if the pattern is far away,
or if the image is subject to motion blur, the edges will be
weaker and the ID might not be decoded correctly.

Although the separation of encoding and tracking allows the
marker to be tracked at distances far beyond the point at
which it can be identified, it is important that the system
provides consistent ID information even if the individual ID
decoding is noisy. In order to handle noisy ID readings,
we maintain a probabilistic distribution of all possible IDs
over all visible markers. This distribution is updated using
Bayes whenever a detected marker ID is decoded. In other
words, each detected marker is associated with n numbers,
representing the probabilities p(id = 1 . . . n) that the marker
has an ID 1..n. Whenever the marker’s ID is decoded, each
of these numbers is updated by a Bayesian rule

p(id|o) =
p(o|id)

p(o)
p(id), (10)

where p(id) represents the prior probability of the marker
having a given id and p(o|id) corresponds to the probability
of decoding the pattern incorrectly. Since p(o|id) is deter-
mined by the quality of the marker’s decoding ring image, we
quantify the quality of the decoding ring as the sum of gra-
dients along it – this corresponds to the quality of the edges
that constitute the Manchester encoding. Thus, we assume
that the probability of the correct decoding of p(o == id)
equals f(s), where s is the sum of the gradients along the
image of the decoding ring and f(.) is a sigmoid-shaped func-
tion (modelled by an arctan() in our case. Our experiments
have shown that f(s) captures many of the factors which af-
fect the marker’s identification correctness, such as marker
size, detection distance, motion blur, extreme viewing an-
gles and low-lighting conditions. Thus, in cases, where the
edges of the decoding ring are weak, the confidence f(s) is
low and the id of the marker is affected more by its previous
state than by the current observation. However, if a marker
is particularly visible, f(s) is high and the new, high quality
measurement is taken into account. Note that this calcu-
lation is computationally inexpensive and as such does not
affect the computational complexity of the system.

5.2 Hamming Code
Another possibility to improve the quality of the pattern
identification is the adoption of self-corrective encoding on
top of the necklace code. The first logical step was to in-
crease the number of code bits n and ensure that a minimum
Hamming distance w is kept between any two codes used.
In theory, this would allow for the correction of (w−1/2) bit
errors, thus giving the system the ability to identify (w− 1)
errors in bit order. This would consequently increase the

robustness of the system because if a bit or two flips, it is
regarded as invalid and is rounded to the closest ID. Because
the proposed coding system is rotation invariant, however,
it also needs to take into account the Hamming distance be-
tween every cyclic permutation of the necklace code. This
can severely limit the number of possible IDs, see Table 2.
Moreover, more bits means smaller elements of the decoding

Table 2: Necklace code length in bits and corre-
sponding number of unique marker identities

Hamming Code length [bit]
distance 4 6 8 10 12 14 16

1 bit 3 9 30 99 335 979 2623
2 bit 2 5 16 51 170 580 1759
3 bit 1 2 3 7 16 48 125
4 bit 1 1 2 5 10 24 69

ring, which increases the chance of errors when decoding the
ID from the image. Thus, there is a trade-off – higher Ham-
ming distance improves a change of detecting or correcting
an error, but it also increases a chance of introducing one.

To determine which Hamming distance to use for pattern
identification, we recorded 4 sequences, where UAVs carried
tags with Hamming distances of 1, 2, 3 and 4. These exper-
iments indicated that while using Hamming distances of 3
and 4 did not bring additional benefit in terms of identifica-
tion robustness, using Hamming distance 2 allowed for the
detection of false identifications. Taking into account the
false identifications in the confidence function f(s) from the
previous section, allows the result of the error detection to
be taken into account in the Bayesian update scheme. Thus,
the Hamming code’s ability to detect errors along with the
Bayesian update scheme of the IDs probability resulted in
less than 5% identification error on the UAV dataset de-
scribed in Section 7. Furthermore, the Hamming code’s abil-
ity could be used to learn the f(s) from the actual data on-
the-fly, improving the robustness of the identification even
further.

6. EXPERIMENTS
To evaluate the performance of the proposed marker, we
compared its localisation accuracy, detection range and iden-
tification reliability to state-of-the-art fiducial markers in a
series of real experiments. Each of these tests used an RGB
camera of an ASUS Xtion RGB-D sensor, as it corresponds
with the type of sensor that is widely used on robotic plat-
forms, providing a standard 640×480 image at 25 frames
per second. This sensor was fixed to a FLIR E46-17.5 Pan
Tilt Unit (PTU) which provided a ground truth for the
marker position, orientation and velocity. This PTU was
also mounted atop a mobile platform with a SICK s300 laser
scanner. As the detectable range of the markers exceeds the
range of a ASUS depth camera, the laser scanner with a
range of up to 30m provided a reliable distance measure-
ment that was also used for the ground truth in some of the
experiments. To allow for a fair comparison of the proposed
marker against the ARTags and AprilTag, each of these
markers were resized to occupy the same area of 3.817cm2.



A default calibration was also used, rather than specifically
calibrating the camera, to demonstrate the system’s perfor-
mance in standard circumstances.

6.1 Detection and Identification Range

Figure 4: Illustration of range tests

The first test aimed to evaluate the effect that distance had
on the performance of the system. The markers were affixed
to the wall at a height equal to that of the camera. The
mobile platform was then programmed to move backwards
from a distance of 0.2 metres until the platform reached a
distance of 7 metres from the wall. The movement occurred
at a constant speed of 0.02 metres per second, which was
selected in order to ensure that motion blur was not a sig-
nificant factor.

Table 3: Maximum distances at which the markers
were consistently detected and identified [m]

WhyCon AprilTag WhyCode ARTags

Detection 5.4 2.1 4.9 3.4
Identification – 2.1 2.4 2.7
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Figure 5: Maximum distances at which the markers
were consistently detected and identified

As can be seen in Table 3 and Figure 5 the original WhyCon
marker has proven to achieve the longest detection range of
5.4 metres. Although the WhyCode marker was almost
able to achieve a similar range, the new marker started to
provide incorrect IDs once the distance had surpassed 2.4
metres. Similarly to that, the ARTags were undetectable at
a range of 3.5 metres or more, and their correct identification
was not reliable when the distance of the marker exceeded
2.7 metres. As for the AprilTag, no incorrect IDs were
reported. However, the distance at which the marker was
reliably detectable was the lowest of the markers tested at
only 2.1 metres.

6.2 Identification Range vs. Code Length
A similar test was also conducted on the WhyCode marker
to identify how changing the number of encoding bits affects
the range at which the encoding can be correctly identified.
As can be seen in Figure 6 using less than 8 bits for the
code does not affect the range, while increasing it has a neg-
ative impact on the identification range. This corresponds
with the expectation that the limiting factor of identifica-
tion range is the size of the individual elements that make
up the encoding pattern.
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Figure 6: Dependence of maximal identification
range on the Necklace code length n. The estimate
is based on a formula min(2.4, 200/n)

6.3 Robustness to Motion Blur

Figure 7: Illustration of motion blur tests

This test, which was intended to analyse the effect of motion
blur on the markers, involved keeping the markers station-
ary whilst rotating the PTU. This setup not only ensured
the equal movement of all the markers, but also created a
stable, continuous and repeatable experiment which repre-
sented one of the system’s intended applications: mobile
robotic platforms with a moving on-board camera. With
the markers affixed to the wall, the camera was placed ex-
actly 1 metre from the wall and the PTU rotated from -90
degrees to +90 degrees at a constant speed. Figure 8 shows
the speeds that were tested during this experiment with the
resulting detection and identification ratios.

These results indicate that while both WhyCode and Why-
Con systems are less susceptible to motion blur, the April-
Tag identification scheme is more robust to motion blur
compared to WhyCode.

When attempting to decode the ID, the WhyCode marker
reported a number of incorrect results at the faster motions,
which is caused by the fact that during these tests, the code
did not employ any error detection or self-correction scheme.
In contrast, the lexicographic error correcting [23] used by
the AprilTag meant that no incorrect IDs were ever de-
tected during our tests.
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Figure 8: The results of the Motion Blur experiment
- dependence of the detection rate on the marker
velocity.

6.4 Accuracy of Angle Estimation

Figure 9: Rotation timelaps for angle estimation test

Since the x, y, z position estimation is identical to the orig-
inal WhyCon method [13], which reports that its localisa-
tion accuracy is comparable to ARTags based markers, we
tested only the accuracy of angle estimation. In contrast to
the earlier experiments, the markers were this time placed
on the robot’s PTU which, whilst facing the free-standing
stationary camera, used the pan and tilt functions to vary
the angle of the markers. The recorded positions and rota-
tions of the markers were then compared to the angle taken
from the PTU. This comparison was then used to calculate
an error rate for the system, see Table 4.

Table 4: Average error of angle estimates [radians]

WhyCon AprilTag WhyCode ARTags

Pitch/roll 0.024 0.023 0.020 0.038
Yaw —– 0.034 0.042 0.044

As can be seen from the above table, all markers exhibited
average errors lower than 0.05 radians demonstrating that
the system’s ability to establish the marker’s orientation was
successful across all four systems. It should be noted that
while the original WhyCon marker is unable to provide the
yaw rotation, WhyCode can estimate the yaw rotation with
a high level of accuracy using the Necklace Encoding.

6.5 Robustness to Illumination Changes
The last test aimed to verify the performance of the system
when subjected to various lighting conditions. To achieve
this, the markers were positioned next to a large window in

Figure 10: Illustration of lighting variations

order to utilise natural, ambient light and avoid the flicker-
ing sometimes caused by artificial light. By taking a photo
every 10 seconds during the 25 minutes before and during
sunrise, the markers were able to go from complete darkness
to normal daytime lighting conditions. While the ARTags
were detected in 64% of these images, AprilTag, WhyCon
and WhyCode were detected in 71%, 72%, 74% of images
respectively. Since the slight differences in performance may
be attributable to slight variations in light, we can state that
all the markers demonstrated a similar robustness to vari-
able illumination.

6.6 Computational Complexity
In addition to the above tests, a number of computational
performance tests were conducted on each of the systems.
The first of these were conducted using procedurally gen-
erated images of size 5000×5000 pixels containing over 550
randomly placed markers. This test helped to evaluate each
of the systems ability to handle, not only large images, but
also images which contain high number of markers and vary-
ing levels of clutter. Although WhyCon and WhyCode
took more than a second to process the first frame, each sub-
sequent frame was then processed significantly faster. The
average time to process a single frame when comparing the
AprilTag and the WhyCode systems can be seen in Ta-
ble 5, which shows the main advantage of the WhyCode
method – its computational efficiency. Table 5 also shows
that the identification and yaw estimation step do not slow
down the original WhyCon method, which is two orders of
magnitude faster than the ARTags and AprilTag.

The performance boost WhyCon and WhyCode results
from the on-the-fly calculation of the detected segment
statistics, which is naturally achieved by the flood-fill seg-
mentation technique and which allows tracking without any
computational overhead. Although the computational effi-
ciency of both ARTags and AprilTag could be improved
by employing some tracking scheme, it is unlikely to achieve
a two-orders of magnitude speed-up.

Table 5: Average processing time of an image with
550 markers [seconds]

Clutter WhyCon AprilTag WhyCode ARTags

none 0.06 3 0.06 3
little 0.07 16 0.07 14
large 0.07 15 0.07 15



6.7 Motion Prediction Speed Up
The computational performance of the system is affected by
its ability to predict the approximate positions of the mark-
ers in the currently processed image. The earlier versions
of the system simply searched for the pattern at the posi-
tion it was detected in the last processed image, which was
sufficient for experiments, where the markers moved only
slowly. However, if the system is deployed in situations,
where the tracked objects move rapidly, e.g. when the sys-
tem is used to track aerial robots [19], the aforementioned
method failed to predict the positions properly, which re-
sulted in system slowdown. Thus, we improved the motion
prediction by taking into account the marker velocity as de-
scribed in Section 4.1.

Table 6: Average processing time of sequences with
rapidly-moving markers [ms]

Sequence number
Tracking type I II III IV

Position only 21.5 24.1 25.2 30.1
Position + velocity 19.7 20.2 23.0 28.3

To evaluate the effect of the improved tracking scheme, we
calculated the average time it takes to process an image of
the UAV dataset described in Section 7, which contains four
sequences of flying robots captured from an UAV-mounted
camera. The Table 6 shows that taking into account the
tracked pattern velocity reduces the computational load by
∼10-20%.

7. DATASETS
Another contribution of this work is the addition of two
publicly available datasets that ensure the repeatability and
verification of the results obtained above. The first of which
provides numerous videos, along with position and move-
ment statistics taken from a SCITOS robot, which can
be used to test the abilities of the WhyCode, WhyCon,
AprilTag and ARTags systems that are mentioned above.
In addition to the benchmarking dataset, a real world exam-
ple of the new system being utilised to track drones flying
outside, along with their reported positions taken from the
drones IMU and GPS devices. Both of these datasets are
available for download from: http://lncn.eu/fidusets.

8. CONCLUSION
In this paper, we present an extension to the marker used by
the WhyCon tracking system. The proposed method not
only utilises a new encoding algorithm which allows identifi-
cation of each marker, but also extends the system to allow
the full localisation of a marker with 6 DOF. Furthermore,
we introduce several improvements that strengthen the ro-
bustness, accuracy and computational efficiency of the de-
tection and identification. By keeping the simple roundel
design, the proposed marker is not only backwards compati-
ble with the previous system, but also maintains its sub-pixel

(2D) and millimetre (3D) precision, and high computational
efficiency.

The results of our study show that the WhyCode system,
despite the additional overhead of having to decode marker
IDs, performed similarly to the original WhyCon system
and outperformed the comparative systems in both accu-
racy and speed. By exceeding the high level of performance
demonstrated by the AprilTag and ARTags, and at two
orders of magnitude faster, the proposed system achieves
a strong level of accuracy without the high computational
requirements. These achievements therefore make the pro-
posed system particularly applicable to resource-constrained
systems and scenarios, where the reliable and swift tracking
of multiple robots is a necessity. Moreover, the WhyCon
system can reliably detect smaller markers at longer ranges,
which is also makes it a popular alternative to AprilTag or
ARTags.

In the future, we will explicitly model uncertainty of the
marker locations, which should not only improve our sys-
tem’s accuracy [17], but also its coverage by allowing to fuse
input from multiple cameras.
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