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Modelling capillary break-up of particulate suspensions
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We have constructed a simple one-dimensional model of capillary break-up to demon-
strate the thinning behaviour of particulate suspensions previously observed in ex-
periments. The presence of particles increases the bulk viscosity of a fluid and so is
expected to retard thinning and consequently delay the time to break-up. However,
experimental measurements suggest that once the filament thins to approximately
five particle diameters, the thinning no longer follows the behaviour predicted by
the bulk viscosity; instead thinning is “accelerated” due to the effects of finite par-
ticle size. Our model shows that accelerated thinning arises from variations in local
particle density. As the filament thins, fluctuations in the local volume fraction are
amplified, leading ultimately to particle-free sections in the filament. The local vis-
cosity of the fluid is determined from the local particle density, which is found by
tracking individual particles within the suspension. In regions of low particle density,
the fluid is less viscous and can therefore thin more easily. Thus, we are able to
model the accelerated thinning regime found in experiments. Furthermore, we ob-
serve a final thinning regime in which the thinning is no longer affected by particle
dynamics but follows the behaviour of the solvent. © 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4866789]

. INTRODUCTION

Inkjet printing is fast becoming a versatile, widely used manufacturing tool. A diverse range of
materials can be manipulated using inkjet technology, the most common being particulate suspen-
sions. Most graphical inks contain solid pigment particles rather than dyes and in many non-graphical
applications, such as printed electronics, the functional components of the ink are solid particles.
Solid-laden inks are also required in ceramic manufacture and textile printing. However, there is
relatively little known about particulate effects on the stability and break-up of liquid jets compared
to Newtonian fluids or even other complex fluids such as polymer solutions.

The detachment dynamics for simple Newtonian fluids are now well understood.! Surface
tension acts to destabilise a liquid jet, driving the free surface to minimise its surface energy and
break up into spherical droplets. Viscous forces resist this thinning action and enable the liquid to be
drawn into thin, uniform filaments before ultimately breaking up. Eggers” developed the theory for
the universal pinch off of an axisymmetric free surface, which states that the decay of a Newtonian jet
depends on a balance of surface tension y, inertia, and viscosity p, such that the minimum filament
radius obeys the thinning law

Banin = 0.0304 2 (¢ — 1), (1)
%

where 1, denotes the break-up time. This thinning law applies to cases of moderate Ohnesorge
number, which is defined as

"
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where p is the fluid density and R is the jet radius. At extreme values of the Ohnesorge number,
viscosity or inertia may dominate the dynamics giving different thinning laws. For highly viscous
fluids with large Ohnesorge numbers, inertia may be neglected and Papageorgiou® determined the
thinning law

Fnin = 0.07092 (1 — 1), )
%

whereas for inertially dominated liquids the thinning may be described by*

y 1/3
Bomin = 0.64 (—) (t — 1,)*3. 3)
o)

Both the inertial and viscous regimes eventually cross over to the universal Eggers solution at
some critical radius.! In the case of inertial flow, as the filament radius becomes thinner, the local
Ohnesorge number increases so that eventually viscous effects are significant. On the other hand,
inertia becomes surprisingly important near to break-up for viscosity dominated flows. In each case
the local balance induces a transition to the Eggers regime (1) in which all three forces are significant.

Campo-Deano et al.” propose that the critical Ohnesorge number defining the boundary between
viscosity and inertia dominated regimes is

Oh* =0.2077,

with excellent agreement to their experimental results. Thus, for fluids with Oh < Oh* behaviour
is initially governed by inertial forces, whereas a viscosity dominated regime is observed for fluids
such that Oh > Oh*. Ultimately, thinning adopts the universal Eggers regime (1), however, the
critical radius at which this transition occurs may not be within observable limits. For inkjet printing
applications, stable drop generation for Newtonian fluids is limited to a narrow range of viscosities®’
corresponding roughly to Ohnesorge numbers in the range 0.1 < Oh < 1. If the Ohnesorge number
is too high, then viscous forces prevent break off of the ligament from the nozzle. On the other hand,
if the Ohnesorge number is too low, then surface tension causes the trailing ligament to break up
into a number of unwanted satellite drops.

The existence of universal thinning laws initiated the use of capillary break-up as a rheological
technique, allowing direct access to the viscosity of the fluid. Stretching a liquid sample between
two end plates induces a strong extensional flow and thus allows the study of viscous properties
under extensional deformation. Capillary break-up experiments have proved effective in measuring
the extensional properties of polymeric fluids, such as relaxation time and extensional viscosity.> %
Furthermore, recent studies have demonstrated that extensional rheometry can be successfully per-
formed on particulate suspensions.'®-!> However, the detachment dynamics of particle-laden fluids
are not yet fully understood.

The presence of particles in a solvent increases the bulk viscosity of a fluid. Thus, particles
are expected to retard the thinning process and consequently delay the time to break-up. However,
experimental measurements using the pendant-drop technique'*~!> suggest that once the filament
has thinned to approximately five particle diameters, the thinning no longer follows the behaviour
predicted by the bulk viscosity. In fact, the thinning is “accelerated” due to the effects of finite particle
size. Furthermore, the thinning dynamics of particulate fluids are found to be less predictable than
those of continuous fluids.

In particular, experiments on non-colloidal particle suspensions show a faster thinning rate
than that predicted by the Papageorgiou regime for the bulk viscosity. For concentrated particle
suspensions ¢, > 20%, Bonnoit et al.'® claim that this accelerated regime is independent of the
initial volume fraction and can be described as the thinning of a viscous fluid with viscosity equal
to that of a suspension of volume fraction 17%. However, for inkjet printing purposes the solutions
are generally more dilute. For smaller volume fractions ¢,, < 6%, van Deen et al.'® show that even
the presence of a single particle in the thinning filament modifies the detachment dynamics, again
accelerating the thinning rate.

A mathematical model has recently been developed to study the dynamics of filament evolution
towards break-up in the presence of an embedded, solid, spherical particle.!” A single particle is



033101-3 C. Mcllroy and O. G. Harlen Phys. Fluids 26, 033101 (2014)

modelled as a “stresslet” and assumed to remain stationary at the jet midpoint. Initially the jet evolves
much like a pure liquid jet, until stretching-induced stresslet flow begins to alter the dynamics. This
particle induced flow causes strong local deformation of the free surface and their results demonstrate
the formation of a liquid bulge around the particle, with the point of pinch off shifting from the centre
to accommodate the particle. Their results explain the observations in experiments'# that if a large
enough number of particles become trapped in the filament region during the thinning process, then
thinning is resisted rather than accelerated. The properties of particles suspended within a thinning
filament are found to be critical to the stability of a liquid jet. However, this model does not explain
the accelerated dynamics that is generally observed in experiments of particulate suspensions.

Our hypothesis is that the accelerated thinning regime arises from variations in the local particle
density. As the filament thins, the variations are amplified leading ultimately to sections of the
filament containing no particles at all. Sections of the filament that have a low particle density
consequently have a lower viscosity and can therefore thin more easily. Similar fluctuations in
particle density have been observed by Roche et al.'® during the thinning of a liquid bridge; close to
break-up, certain regions within the bridge become jammed whilst particles experience a significant
flow in other areas. To test our hypothesis, we have constructed a simple one-dimensional model
of capillary break-up in which the viscosity is determined from the local particle density, found by
tracking individual particles within the suspension. The particles are assumed to be non-Brownian
so that they are simply advected with the fluid velocity. Since the particles only contribute to the
dynamics through the local viscosity, the direct effects of hydrodynamic interactions between the
particles and the effects of the individual particles on the shape of the free surface are not included.
Nevertheless, our model is able to reproduce the accelerated thinning found in experiments.

Il. A ONE-DIMENSIONAL MODEL
A. Modelling capillary break-up

We shall consider the thinning and break-up of a liquid bridge held between two end plates,
as used in capillary break-up experiments.> With the exception of the boundary conditions applied
at the ends, this is equivalent to the break-up of an infinite jet and so local thinning behaviour is
expected to be the same. We assume that the liquid bridge is long and thin so that we can treat it as
a slender, axisymmetric jet.!

The slender-jet approximation assumes that velocity and stress are independent of the cross-
sectional area. We can therefore assume that the kinematics of the motion are one-dimensional and
variables depend only on axial position z and time ¢. A one-dimensional model is surprisingly accu-
rate, even if the long-wavelength assumption is not well defined as in the liquid bridge problem.'®-°
In their study of falling particle plumes, Crosby and Lister?! conclude that the effect of particle
density modes in the r and 6 directions are unimportant. Thus, we shall assume that particle density
varies only with the axial coordinate z.

Denoting the jet radius A(z, f) and the velocity v(z, t), we have the following governing equations,
as derived by Forest and Wang.?? Conservation of mass yields

dh* 9,
o T 2z (h*v) =0, “)

and conservation of momentum is given by
0 d 0 v
—(h*)+ —(h*v) = — (r* (K +30h— | ), 5
at( v+ Bz( v 0z * 0z ©)

where the curvature term is defined as®?
P .
(1+h232  h(1+ A2

for the first 4, and second h, derivatives of h. Here the governing equations have been non-

dimensionalised using the Rayleigh time scale Tk = pRS /y for initial jet radius Ry. The
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FIG. 1. A one-dimensional model to represent the capillary thinning of a particulate suspension. Particles are sorted into
“bins” of length bz. Shaded particles are allocated to a bin according to their position.

dimensionless Ohnesorge number O is defined for initial jet radius Ry and describes the importance
of the resisting viscous forces compared to the driving surface tension.

To simulate a capillary break-up experiment, we assume Dirichlet boundary conditions such
that the free surface # is fixed and there is zero axial velocity v at the end-plates. The end-plates have
radius 2 mm and are held at fixed separation distance 6 mm. The initial shape of the free surface
is modelled as an arc of a circle, with mid-filament radius set to Ry = 1 mm to induce capillary
thinning.

The governing equations (4) and (5) are solved via a Lax-Wendroff scheme, which is second-
order accurate in both time and space. The equations are solved on a uniform mesh for nodes
j=1,...,J. The mesh size dz satisfies the Courant stability condition vdt < dz for time step dr.
The stability of this explicit method is also subject to the condition that the time step df must be less
than the diffusion time /#%/Oh, thus is restricted at high viscosities.”* Hence, for Oh > 3, we have
used an implicit numerical scheme.

B. Modelling particle motion

Initially, particles are uniformly distributed at random locations throughout the fluid. We assume
that the number of particles N is much larger than the number of mesh nodes J. The initial particle
positions z, forp =1, ..., N are assigned as follows.

We define the accumulated volume V (z) as

V) =7 / h2(Z)d7 . (6)
0

A corresponding V position is chosen for each particle from a uniform distribution on the interval
[0, Vi1, where V,,, is the volume of the entire liquid bridge. Then, the corresponding value of z,
is found by inverting equation (6). In subsequent motion, we assume that each particle moves with
the axial velocity v(z,, t) obtained by linear interpolation between grid points. The distribution of
particles is then determined from particle position. A diagram of particle motion within the liquid
bridge is shown in Figure 1.

Brownian motion opposes the creation of particle density gradients, however, in our model, we
assume that the particles are sufficiently large that Brownian motion is negligible. The importance
of particle diffusion on the length scale of the particle radius r is measured by the Peclet number,

Po— 67 pgér’
kgT

for the Boltzman constant kg and absolute temperature 7. The characteristic stretching rate ¢ is
defined by the time scale of the flow, which is taken to be the smaller of the inverse Rayleigh

k]

time scale \/y/pR; or the inverse viscous time scale y/uRy. For an extension rate of ¢ ~ 10 s~!,
which is typical of capillary thinning experiments, the Peclet number for 1 um particles is of the
order Pe ~ 10* for solvent viscosity 389 mPa s and filament radius 1 mm. Thus, the large Peclet
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FIG. 2. (a) Plot showing the bulk viscosity Oh,, obtained from the Krieger-Dougherty model as a function of particulate
volume fraction for various values of solvent viscosity Oh;. (b) Effective particle radius r as a function of the total number
of particles N for various volume fractions ¢, .

number assumption is valid for the pendant drop experiments,'* 4 where the particle sizes are around

~40-250 pm. For inkjet printing applications, where inks are much less viscous (say 11 mPa s) and
typical nozzle length scales are around Ry ~ 50 wm, the extension rates are around ¢ ~ 10* s~! and
the limiting particle size is approximately ~10 nm.

C. Local viscosity of suspensions

The average volume fraction of particles in a suspension is given by

N Ve,
Vior

¢au =

where V7 is the particle volume, which for spherical particles is

VP = inr3.
3
Thus, particle size can be varied by changing the total number of particles N for a given average
volume fraction ¢, .

We determine the local particle volume fraction by dividing the filament into a number of “bins,”
as shown in Figure 1. The length of each bin bz is set to ~2r so that the length scale for volume
fraction perturbations is set equal to the particle diameter. This bin size is typically larger than the
grid resolution used in the velocity calculation.

The local viscosity is determined by the Krieger-Dougherty model?’ so that the local Ohnesorge
number in Eq. (5) is given by

¢\
Ohi=0hs(1— ! ) , i=1,...J, (7)
max

for local volume fraction ¢; and solvent Ohnesorge number Oh,. Here ¢, is the maximum packing
coefficient, which is found from numerical simulations to be ¢,,,, = 0.64 for random close-packing
of monodisperse spheres.?® This maximum packing condition implicitly constrains the number of
particles that can occupy a particular axial position. For a uniform distribution of particles, the
average or bulk viscosity Oh,, can be calculated by evaluating the Krieger-Dougherty model at the
average volume fraction ¢,,,.

The concentration dependence of the bulk viscosity predicted by the Krieger-Dougherty model
is plotted in Figure 2 for a range of solvent viscosities Ohy. Also shown in Figure 2 is the dependence
of particle size on the total number of particles for a range of average volume fractions. For example,
a suspension of ¢,,, = 20% particles will increase a solvent viscosity of Oh; = 0.1 to the bulk value
Oh,, = 0.22 and for N = 100 000 particles the effective particle radius is r = 0.024.
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FIG. 3. (a) Newtonian model Oh = 0.2 for filament thinning compared to the inertial regime (3) and the Eggers regime (1).
(b) Newtonian model Oh = 1.5 compared to the Papageorgiou viscous regime (2).

lll. RESULTS
A. Newtonian behaviour

As discussed in the Introduction, the thinning dynamics of a liquid bridge are governed by a
balance of surface tension, viscosity, and inertia characterised by the Ohnesorge number. Under the
action of surface tension the liquid bridge develops into two hemispherical drops connected by a
thin filament. In Figure 3 we compare the evolution of the minimum filament radius predicted by
our model for two Newtonian fluids of differing viscosities.

In Figure 3(a) we show the results for a fluid with Oh = 0.2 (typical of inkjet printing fluids for
which 0.1 < Oh < 1), where the origin of time is shifted to the break-up time. Since Oh < Oh* the
thinning is initially dominated by inertia and is seen to follow the inertial regime given by Eq. (3).
The Ohnesorge number of this Newtonian fluid is close to the critical value Oh* = 0.2077, thus we
are able to observe the transition to the universal Eggers regime given by Eq. (1). This transition
occurs when the filament radius has thinned to approximately 4,,;,, ~ 0.05.

In contrast, a fully developed viscous regime is seen for Oh = 1.5 in Figure 3(b), where the
radial decay follows Papageorgiou’s linear thinning regime (2). These results are in agreement with
the experimental observations of Campo Deano et al.’

B. The effect of particles on thinning behaviour

The addition of particles to a Newtonian solvent increases the bulk viscosity of the fluid, as
predicted by the Krieger-Dougherty equation (7). For solvent viscosity Ok, = 0.1, the addition of
dav = 20% particles to the Newtonian solvent increases the viscosity to the bulk value Oh,, = 0.22.
The increased resistance acts to retard the thinning process and Figure 4 shows that the time to break-
up for a Newtonian fluid with the bulk viscosity is nearly twice as long as that of the solvent viscosity.

Figure 4 also shows the mean radial decay profile of ten realisations predicted by our particle
model, where the effective particle size is r = 0.024 relative to the initial mid-filament radius;
the shaded region indicates the standard deviation from the mean. The particulate suspension is
seen initially to follow the behaviour of the bulk viscosity. However, as the filament radius decays
we observe accelerated thinning and the time to break-up is consequently reduced. The results of
choosing different bin sizes are shown in Figure 5 and compared to the bulk viscosity model. The
difference in the radial decay profile for different bin lengths is small compared to the effect of
particles on the bulk behaviour. Furthermore, the difference due to changing bin size is within the
standard deviation measured for the suspension shown in Figure 4. Consequently, the specific bin
size does not significantly affect the dynamics provided b, < 2r but remains small compared to the
filament length.
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FIG. 4. Radial decay profiles of pure solvent Ohy = 0.1, bulk viscosity Oh,, = 0.22, and the corresponding particulate
suspension of volume fraction ¢, = 20% and particle size r = 0.024. The shaded area shows that standard deviation from
the mean for ten realisations.

To understand particle effects on the thinning behaviour, we study the evolution of the local
particle density. Since the particles move with the fluid velocity, they are transported out of the
thinning filament and into the end drops as the filament radius decays. Thus, although the average
particle density in the filament remains constant, large fluctuations in the local particle density
appear, as shown in Figure 6(a). Near to break-up, there are regions deplete of particles as well as
regions of high density.

Figure 6(b) shows that the particle fluctuations are mirrored in the fluid viscosity so that there are
regions of both high and low viscosity in the filament compared to the bulk viscosity Oh,, = 0.22.
The viscosity is reduced to that of the solvent Oh; = 0.1 in areas devoid of particles. It is these areas
of low viscosity that allow the filament to neck and thin faster than a Newtonian fluid of the bulk
viscosity.

Bulk model

Minimum Filament Radius

Time

FIG. 5. Radial decay profile of a particle suspension for varying bin size bz compared to the bulk viscosity model for
suspension properties Ohy = 0.1, ¢4y = 20%, r = 0.024.
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FIG. 6. (a) Volume fraction evolution profile and (b) viscosity evolution profile for suspension properties Oh; = 0.1,
Pav = 20%, r = 0.024.

The free surface evolution profile of the particulate suspension is shown in Figure 7(a). Although
our model is unable to predict individual particle effects on the free surface, close to break-up the
profile appears “lumpy” with variations in filament thickness that reflect variations in particle
concentration. Particle-rich regions appear as bulges that correspond to clusters of particles. In the
region containing no particles, the free surface is able to thin down and form a uniform filament, as
observed in the corresponding Newtonian case shown in Figure 7(b).

A plot of particle evolution with time is shown in Figure 8, which provides a spatio-temporal
diagram of the variation in volume fraction with radial decay and axial position. We illustrate two
different scenarios in Figures 8(a) and 8(b); first, we show the full particle model, where the onset
of particle fluctuations is fed back into the fluid viscosity and therefore affects the local thinning
dynamics; second, we show a hypothetical case in which viscous feedback is neglected and we
consider only the motion of the particles in a fluid of uniform viscosity. The latter case is referred
to as the average viscosity model. By comparing Figures 8(a) and 8(b), we can examine how the
dynamics affect fluctuations in particle density.

In particular, Figure 8(a) shows how the volume fraction variations grow with time for one
particular realisation of a suspension with Oh; = 0.1, ¢,, = 20%, r = 0.024 whereas Figure 8(b)
shows how the fluctuations would have evolved if we hypothetically impose a uniform viscosity
Oh = 0.22, which corresponds to the average volume fraction used in the full particle simulation.
We continue by highlighting the differences between these two plots and describing how particle
fluctuations develop as a consequence of variations in the local viscosity.

(a) Particle Model : Free Surface Evolution (b) Newtonian Model : Free Surface Evolution
2 = . 2 = .
18 -
16
é 14 2 / -5,
[} oz >
T 12 1 T 1
2 e 2
g 1t . ) 1€ 1 . ) 1
=1 N g = N, i
08 4 @ 08¢ g
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FIG. 7. Free surface evolution profile of (a) suspension with properties Ohg = 0.1, ¢y = 20%, r = 0.024 and (b) bulk
viscosity Newtonian fluid Oh,, = 0.22.
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FIG. 8. (a) Evolution of volume fraction variations for one realisation in the case Oh; = 0.1, ¢4, = 20%, r = 0.024 predicted
by the particle model. (b) Evolution of particle fluctuations for the same suspension properties but for a hypothetically
imposed uniform viscosity Oh = 0.22 (see text for details). Each is compared to the free surface profile at the point of
break-up.

In each case, the initial statistically uniform state corresponding to %,,;, = 1 shows little variation
in the particle density. It is evident that fluctuations are amplified as the volume of fluid in the filament
is reduced, which can be observed in the development of light and dark areas in Figure 8. For the
average viscosity model shown in case (b), random clusters of particles form during radial decay,
whereas the fluctuations in density develop much more smoothly for the full particle simulation
shown in case (a).

In the latter case, the particle density feeds back into the fluid viscosity. The higher viscosity of
particle-rich regions means that these tend not to thin further, but are advected along the filament.
On the other hand, in the light areas that contain a lower particle density, the viscosity is reduced
and consequently the region is able to thin more rapidly than the rest of the fluid. The reduction in
volume drives more particles out of the filament into the end drops so that the low-viscosity region is
able to develop into a uniform filament. We observe that, in most realisations, the viscous feedback
of the particle model allows a single, uniform, low-viscosity filament to form between the two end
drops. This is in contrast to the average viscosity model, which neglects dynamic feedback, where
we see alternating regions of low and high volume fraction over the length of the filament. In our
model, we neglect the effects of individual particles on the free surface. These effects are expected to
become important only when the filament diameter is of the order of the particle diameter. However,
at this point we observe that the filament contains no particles at all and consequently the local
thinning dynamics at the minimum filament radius are unlikely to be affected by these interactions.

Other structures are possible depending on the initial distribution of particles, as shown in
Figure 9. Instead of a single uniform filament, we observe an area of high particle density located
at the centre of the axis, with regions deplete of particles surrounding it. This corresponds to the
generation of a small satellite drop at the mid-filament point, which is connected to the end drops by
threads of liquid. Instead of being advected into the end drops, particles remain trapped in the satellite
indicated by the darker central region, which does not thin down due to its high local viscosity. The
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FIG. 9. Evolution of volume fraction fluctuations for one realisation predicted by the particle model compared to the free
surface profile at the point of break-up for Ohy; = 0.1, ¢y = 20%, r = 0.024.

surrounding areas have a lower viscosity and are therefore able to thin more rapidly than the central
droplet. This creates two shorter, uniform filaments that suspend the particle dense satellite drop
between the end drops. Similar “beads-on-string” morphologies have been observed by Zimoch and
McKinley?’ and also compared to a one-dimensional model. For this “beads-on-string” case, the
particle interactions with the free surface are more important and our model assumptions do not
hold in the region of the bead. However, our model will still capture the differential thinning of the
connecting filaments that contain no particles.

We have calculated the standard deviation of particle density from the average volume fraction
¢av = 20% and taken the mean over six realisations. Figure 10(a) compares the particle model to
the average viscosity model without dynamics and Figure 10(b) highlights the difference between
the two cases. The variation in particle fluctuations is equivalent in the initial stages of thinning. The
effect of viscosity variation on the distribution becomes evident at approximately #,,;, ~ 0.1, where
the fluctuations observed in the particle model grow more slowly than in the case without viscosity
feedback. In this example the dimensionless particle radius is calculated to be » = 0.024. Thus, the
point at which finite size affects the dynamics occurs when the filament radius has reduced to around
four-five times the particle radius. This observation is not affected by the bin discretisation, as we
have shown in Figure 5. This change in dynamics agrees with experimental observations that the
dynamics follow that of the bulk viscosity up to the point where the filament diameter has thinned
to approximately five particle diameters.'>

Figure 11 shows the effect of increasing particle size on the mean minimum filament radius
and the time to break-up. As particle size increases, the total number of particles in the simulation
decreases and as a consequence the statistical variability between realisations increases. Therefore,
more realisations are required in order to determine the mean break-up time. We observe that the
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FIG. 10. (a)Standard deviation of particle density from the average volume fraction ¢,,, = 20% averaged over six realisations
for suspension properties Ohy = 0.1, r = 0.024. (b) Difference between the particle model and average viscosity model.
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FIG. 11. Radial decay profile of a particulate suspension Oh; = 0.1, ¢4, = 20% for varying particle size.

thinning behaviour is equivalent for each particle radii until finite size affects the dynamics at
approximately A,,;, ~ Sr. For larger particles, fluctuations in volume fraction are amplified and these
variations occur earlier in the thinning process. Thus, increasing particle size further reduces the
average time to break up. For very small particles r < 0.01, Newtonian behaviour will be recovered.

For a range of Ohnesorge numbers, volume fractions, and particle sizes, we find that the mean
time to break-up of a particulate suspension is reduced in each case, in comparison with the break-up
time of the corresponding Newtonian fluid of the bulk viscosity. However, variation from the mean
break-up time is found to increase with each of these properties. The values of the standard deviation
normalised by the mean break-up time, averaged over ten realisations, are shown in Figure 12.
Hence, as seen in experiments, the behaviour of particulate suspensions is less predictable than that
of the equivalent continuum fluid.

Although on average the time to break-up for a particulate suspension is decreased compared to
that of the continuous fluid, this may not necessarily be the case for a single realisation. Our model
demonstrates that as particle size and volume fraction are increased, the standard deviation from
the mean break-up time is increased. The spread of break-up times depends upon the distribution of
particles as break up approaches. In general a particle-free filament, having a lower viscosity than
the bulk, is generated and we observe accelerated thinning due to particle effects. However, in some
cases particles become trapped in the filament region creating areas of high viscosity compared to
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FIG. 12. Standard deviation divided by mean break-up time averaged over ten realisations. (a) Increasing solvent viscosity
Ohy and volume fraction ¢,,. (b) Increasing particle size.
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the bulk. These structures may change the whole pinch off dynamics depending on the number of
particles that are trapped in the filament.

Experiments have shown that, for small numbers of particles in the filament, finite size effects
induce accelerated thinning as discussed above. On the other hand, if a sufficiently large number of
particles become trapped in the filament region, then the effect tends to be stabilising; the individual
motions of the particles are restricted and the necking of the filament is slowed.'* Hammeed and
Morris'” study this mechanism further by modelling the local deformation of the fluid interface
due to particle-induced flow. They show that for a single particle located at the centre of a thinning
filament, the thinning rate is decreased for larger particle sizes. Consequently, the larger the particle
trapped in the filament, the more stable the filament is and break-up time is consequently delayed.

Our model does not include this stabilisation mechanism, which occurs at a later stage in the
development when the minimum filament radius is less than the particle radius. However, our model
does predict that thinning becomes more varied as particle size and volume fraction are increased.
Fluctuations in the particle density become more random and so it is more likely that more particles
become trapped in the filament for highly concentrated suspensions containing larger particles.
Thus, the stabilising effect of increasing particle size or volume fraction may decrease the number
of satellite drops produced during jetting.

C. Thinning regimes of particulate suspensions

We have already observed that the initial thinning behaviour of a particulate suspension follows
that of the corresponding Newtonian fluid of bulk viscosity. As the filament radius is reduced, the
thinning enters an accelerated thinning regime due to finite size effects. For solvent viscosity Oh;
= 0.2 we have tested a range of average volume fractions ¢,, = 0.15,0.20, 0.25. The thinning
profiles for each fraction collapse onto a single curve near the break-up point, as shown in
Figure 13, where the origin of time has been shifted to the break-up time. This suggests that
the thinning behaviour near to break-up is independent of the initial volume fraction ¢,,. The ac-
celerated regime we observe is not only faster than the rate of the corresponding Newtonian fluid of
bulk viscosity, it is faster than the thinning rate of the pure solvent, which is also shown in Figure 13.

We have seen that as the filament becomes devoid of particles, the viscosity is reduced to that
of the solvent. Thus, we would expect to observe a transition from the acceleration phase to a final
regime in which the thinning follows the behaviour of the solvent. However, in these cases it is
difficult to determine a final thinning regime adopted by the suspension in comparison to the solvent
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FIG. 13. Radial decay profiles near to the point of break-up for a range of average volume fractions ¢,,, = 0.15, 0.20, 0.25
compared to that of the solvent Ohy = 0.2.
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FIG. 14. Radial decay profile near to break-up for volume fraction ¢,, = 10% and particle size r = 0.02 compared to the
Papageorgiou regime (2) for the solvent Oh; = 2.5 and the bulk viscosity Ohg, = 3.5.

behaviour since Oh; ~ Oh*. For Newtonian fluids having this Ohnesorge number, we observe a
transition to the universal Eggers regime, which occurs at around the same radius that finite size
affects the dynamics. Thus, at this low Ohnesorge number, inertia still plays a significant role in the
thinning process and may obscure dynamics due to particle effects.

In order to avoid this, we consider a larger Ohnesorge number for which a fully developed
Papageorgiou regime (2) is observed. Figure 14 illustrates the thinning profile of a particulate
suspension with solvent viscosity equivalent to Ohy; = 2.5. For volume fraction ¢,, = 10%, the
bulk viscosity increases to Oh,, = 3.5 and for this suspension, the effective particle size is given
by r = 0.02.

The thinning profile of the suspension initially follows the bulk behaviour and Figure 14 shows
that the radial decay obeys Papageorgiou’s thinning law for the bulk viscosity (2). We then observe
a transition to the accelerated thinning regime due to finite size effects at approximately h,;,
~ 5r; particles are forced into the end drops and particle-free regions develop. Again, the rate
of the accelerated regime is seen to be faster than the thinning rate of the pure solvent given by
Papageorgiou’s law (2), which is valid for long, uniform filaments. Acceleration is attributed to the
fact that a depleted filament is not yet slender, thus has a relatively high curvature and therefore
must thin faster than a uniform filament in order to conserve volume.”® When the filament becomes
sufficiently long and thin, the thinning dynamics enter a final regime. Figure 14 shows that the
transition into this regime occurs at around #,,;, ~ r and the thinning behaviour can be described
solely by the solvent properties, characterised by Papageorgiou’s law for the solvent viscosity (2).

If large numbers of particles become trapped within the filament, then the generation of a
slender filament may be restricted. Our model predicts this is more likely to occur for higher volume
fractions. For these cases, we propose that the solvent regime will be observed once the filament
has thinned to less than the particle radius. A liquid bridge of solvent is suspended between two
individual particles, which subsequently forms a slender filament following Papageorgiou’s law for
the solvent viscosity. However, our model is valid only for 4,,;, > r, since we neglect individual
particle effects on the free surface.

IV. CONCLUSION

We have developed a simple one-dimensional model of capillary break-up to demonstrate
experimental observations of drop formation from suspensions. A two-stage thinning model has
previously been suggested'* based on the idea that the initial and final thinning dynamics involve a
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transition from a regime where particle effects are governed by bulk properties, to one where finite
size effects dominate the behaviour.

For an initially uniform distribution of particles, our model predicts that as a liquid filament thins,
fluctuations in the local particle density are amplified resulting in areas of both high and low particle
density. These fluctuations are reflected in the fluid viscosity. Initially, the particulate suspension
behaves like a Newtonian fluid with the corresponding bulk viscosity, however, the development of
low-viscosity regions allows the filament to thin more easily. We therefore observe an accelerated
thinning regime in which the thinning rate is faster than that of the bulk and the solvent behaviour.
Furthermore, our model is able to quantify that finite size effects dominate when the filament radius
has thinned to approximately five times the radius of the particle, as seen in large scale pendant-drop
experiments. 313

For high-viscosity suspensions, we observe a transition from the accelerated regime to an
ultimate thinning regime once the depleted filament has become sufficiently long and thin. Since
the filament is particle-free, the thinning is no longer governed by finite size effects but follows
the behaviour of the pure solvent, which is characterised by Papageorgiou’s thinning law. For low-
viscosity suspensions, a slender filament is not generated at this final stage and the solvent regime is
not observed.
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