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Abstract

A parameter-dependent class of Hamiltonian (generalized) Lotka–Volterra sys-
tems is considered. We prove that this class contains Liouville integrable as well as
superintegrable cases according to particular choices of the parameters. We deter-
mine sufficient conditions which result in integrable behavior, while we numerically
explore the complementary cases, where these analytically derived conditions are not
satisfied.

1 Introduction

The Lotka–Volterra system was introduced independently by Lotka [15] and Volterra [20]
as a predator-prey model. Since then, many generalizations have been considered with
applications to several scientific disciplines. These systems in general display rich dynam-
ical behavior that varies according to the parameters that define each one of them. For
example, there are Hamiltonian and non-Hamiltonian Lotka–Volterra systems, as well as
integrable, non-integrable and chaotic ones. From the point of view of integrability, various
kinds of generalized Lotka–Volterra systems have been extensively studied in the literature,
e.g. [1, 4, 5, 6, 10, 11, 12, 16, 17, 19]. A numerical study of a 4–dimensional non-integrable
Lotka–Volterra system can be found in [18].

In this paper, we study a parametric family of (generalized) Lotka–Volterra systems of
the form

ẋi = xi

(

∑

j>i

ajxj −
∑

j<i

ajxj + ri

)

, ai, ri ∈ R. (1)

This family includes some particular interesting cases. The case of ri = 0 and ai = 1 came
up in the study of a class of multi-sums of products in [13] which is related to integrals
of periodic reductions of discrete integrable systems. It can be considered as a finite
dimensional reduction of a Bogoyavlenskij lattice [2, 3] with fixed boundary conditions.
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The integrability of this case and its corresponding Kahan discretization has been studied
in detail in [13]. In [14], the Liouville integrability and superintegrability of the more
general cases, with ri = 0 and arbitrary ai ∈ R, was proved and explicit solutions were
given for the corresponding continuous and discrete systems. Motivated by these results,
we aim to study the integrable and dynamical aspects of (1), with arbitrary parameters ai
and ri in R.

As is shown in Section 3, all the even-dimensional cases of (1) are Hamiltonian with
respect to a log-canonical Poisson bracket and this also applies to odd dimensions under
some extra conditions on the parameters ri. A first approach to trace integrable cases
is the following. We consider the integrals of the ri = 0 case as they appear in [14],
and we demand them to be in involution with the Hamiltonian function of (1). This
restriction leads to a system for the parameters ai and ri. Solutions of this system provide
necessary and sufficient conditions which ensure the pairwise involutivity of all the integrals
(including the Hamiltonian). This procedure provides several Liouville integrable cases.
By considering a permutation symmetry of the system more integrable cases appear as well
as superintegrable cases according to particular choices of the parameters. These results
appear in Sections 4–5.

In Section 6, we numerically explore the behavior of (1) with n = 4 for the cases where
integrability is not proven by the analytical arguments of the previous sections. To this
end we perform a series of numerical simulations for various different parameters which
determine the system (1). Integrability or non-integrability is manifested by the Poincaré
surfaces of section as well as the evolution of the largest Lyapunov exponent for various
initial conditions at gradually increasing energies. We have strong indications that more
integrable cases exist, however, we find non-integrable cases as well. Notable non-integrable
examples are found for the 4-dimensional Lotka–Volterra system (1) with bounded trajec-
tories in phase space, whose orbits demonstrate a particularly rich complexity.

2 A class of Lotka–Volterra systems

Generalized Lotka–Volterra or just Lotka–Volterra systems are systems of the form

ẋi = xi

(

n
∑

j=1

Aijxj + ri

)

, i = 1, . . . , n , (2)

where A = (Aij) is any arbitrary n × n matrix, known as the community matrix and
r = (r1, . . . , rn) is a vector in R

n.
In this paper, we are going to study a particular class of Lotka–Volterra systems, with

community matrix

A =















0 a2 a3 . . . an
−a1 0 a3 . . . an
−a1 −a2 0 . . . an
...

...
...

. . .

−a1 −a2 −a3 . . . 0















, (3)
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and parameters a1, . . . , an ∈ R. In this case, system (2) can be written as (1), or equiva-
lently, as

ẋi = xi

(

n
∑

j=1

Pijajxj + ri

)

, (4)

where P is the antisymmetric matrix

Pij =

{

1− δij for 1 ≤ i ≤ j ≤ n ,
−1 for 1 ≤ j < i ≤ n .

(5)

The special case of (1) with r = 0 was extensively studied in [13, 14], where the Liouville
and superintegrability of the corresponding systems were proved and explicit solutions were
given. Here, our aim is to investigate the integrability of particular cases with r 6= 0. In
due course we mainly restrict our attention to the case that n is even.

3 Hamiltonian formalism

We consider the log-canonical Poisson structure

{xi, xj} = xixj , 1 ≤ i < j ≤ n. (6)

The rank of this Poisson structure, for x1 . . . xn 6= 0, is n for even n, and n− 1 for odd n.
In the odd case, C := x1x3...xn

x2x4...xn−1

is a Casimir function.

Proposition 3.1. For any even n, ai, ri ∈ R and xi > 0, i = 1, 2, . . . , n, the Lotka–Volterra
system (1) is Hamiltonian with respect to the Poisson structure (6) and the Hamiltonian

function

H(x) =
n
∑

i=1

(aixi + ki log xi),

where x = (x1, . . . , xn) and k = (k1, . . . kn) defined by k = P−1r.

In terms of the parameters ki , the system is written as

ẋi = xi

(

n
∑

j=1

Pij(ajxj + kj)

)

. (7)

For odd n, the matrix P is not invertible. Hence, the Hamiltonian structure of Prop.
3.1 does not include all the cases of (1) for arbitrary r ∈ R

n. However, for any n we can
restrict our analysis to the Hamiltonian systems (7), i.e. systems (1) with r = Pk.

By setting ui = log xi, the Poisson bracket (6) becomes a constant one, that is {ui, uj} =
Pij, and the Hamiltonian functionHu =

∑n
i=1

(aie
ui+kiui). In these coordinates our system

is expressed as

u̇i =
n
∑

j=1

Pijaje
uj + ri =

∑

j>i

aje
uj −

∑

j<i

aje
uj + ri, with r = Pk.
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Remark 3.2. The parameters ai, . . . , an of (1) can be rescaled to a1c1, . . . , ancn, by us-
ing the transformation xi 7→ xi/ci, for ci > 0. This linear transformation preserves the
Poisson bracket and gives rise to an equivalent Hamiltonian system with Hamiltonian
Hy =

∑n
i=1

(aiciyi + ki log ciyi), in the new variables yi = xi/ci. For example, by setting
ci =

1

|ai|
, all the nonzero ai can be rescaled to 1 or −1. Hence, we can consider systems

with parameters ai ∈ {−1, 0, 1} without any loss of generality.

In the present work we will restrict to the even-dimensional case; however, a simi-
lar approach can be considered for odd dimensions. Some additional comments on odd-
dimensional cases as well as two examples, for n = 3 and n = 5, are given in the appendix.

4 Liouville integrability

Following [14], we introduce the functions

vi := a1x1 + · · ·+ aixi, i = 1, . . . , n.

If a1a2 . . . an 6= 0, the functions vi define new coordinates on R
n but generally this is not

true. Furthermore, for any even n we define the functions

Jm(x) =
x1x3 . . . x2m−1

x2x4 . . . x2m

, Im(x) =
x2m+2x2m+4 . . . xn

x2m+1x2m+3 . . . xn−1

, Fm(x) = v2mIm(x) ,

for m = 1, . . . , n
2
. We also set

H0 := Fn/2 = vn =

n
∑

i=1

aixi ,

which corresponds to the Hamiltonian function in the case of r = k = 0. So, the generic
Hamiltonian of (1) is written as

H = H0 +

n
∑

i=1

ki log xi.

In [14], it is proved that for any m, l ∈ {1, . . . , n
2
},

{Jm, Jl} = {Fm, Fl} = {Fm, H0} = 0 , (8)

as well as the following theorem which establishes the Liouville integrability of the system
in the case of r = 0.

Theorem 4.1. Suppose that n is even. Let ℓ denote the smallest integer such that aℓ+1 6= 0
and let λ :=

[

ℓ
2

]

. The n
2
functions J1, J2, . . . , Jλ, Fλ+1, Fλ+2, . . . , Fn

2
−1, H0 are pairwise in

involution and functionally independent.
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Here, our first goal is to determine the parameters ai and r, so that the more general
system (1) inherits the same integrals as the r = 0 case which ensure Liouville integrability.
In the following, we always assume that n is even.

Lemma 4.2. For any m = 1, . . . , n
2
− 1

{Fm, H} = Im

2m
∑

j=1

kj(vj + vj−1 − v2m) . (9)

Proof. Since {Fm, H} = {Fm, H0 +
∑n

j=1
kj log xj} and {Fm, H0} = 0 (from (8)), we get

{Fm, H} =
n
∑

j=1

kj{Fm, log xj} =
n
∑

j=1

kj{v2mIm, log xj}. (10)

Now {v2m, log xj} =
∑2m

i=1
{xi, xj}

ai
xj
, so it follows that

{v2m, log xj} =

{

v2m , for 2m < j ,
vj + vj−1 − v2m , for j ≤ 2m .

Also, we have

{Im, xj} =

{

−Imxj , for 2m < j ,
0 , for j ≤ 2m

(this identity was proved in [14]) and

{Im, log xj} = {Im, xj}
1

xj
=

{

−Im , for 2m < j ,
0 , for j ≤ 2m .

Therefore, we see that

{v2mIm, log xj} =

{

0 , for 2m < j ,
(vj + vj−1 − v2m)Im , for j ≤ 2m ,

and by substituting in (10) we derive (9).

We can recast the sum that appears in (9) to derive

2m
∑

j=1

kj(vj + vj−1 − v2m) =
2m
∑

j=1

xjaj(−

j−1
∑

i=1

ki +
2m
∑

i=j+1

ki) ;

hence, from Lemma 4.2, the next proposition follows.

Proposition 4.3. Suppose that n is even. For every m = 1, . . . , n
2
− 1, {Fm, H} = 0 if

and only if Sjm = 0, for every j = 1, . . . , 2m, where

Sjm = aj(−

j−1
∑

i=1

ki +
2m
∑

i=j+1

ki). (11)
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Solutions of the system Sjm = 0, for m = 1, . . . , n
2
− 1 and j = 1, . . . , 2m, provide

conditions on the parameters ai and ki ensuring that the functions F1, F2, . . . , Fn
2
−1 are

first integrals of the system. Moreover, according to (8), these integrals are pairwise in
involution. Therefore, in the case where Fm 6= 0, for all m = 1, . . . , n

2
− 1, these conditions

on the parameters provide Liouville integrability. For example, in the particular case
where aj 6= 0, for every j = 1, . . . , n, the corresponding system implies the unique solution
k1 = k2 = · · · = kn−2 = 0.

Corollary 4.4. For a1a2 . . . an 6= 0, k1 = k2 = · · · = kn−2 = 0, kn−1, kn ∈ R and

r = Pk = (kn−1 + kn, kn−1 + kn, . . . , kn,−kn−1), the Hamiltonian system (1) is Liouville

integrable with first integrals H,F1, F2, . . . , Fn
2
−1

1.

Now, let a1 = a2 = · · · = aℓ = 0, aℓ+1 6= 0 and λ :=
[

ℓ
2

]

. In such a case, F1 = · · · = Fλ =
0. So, for any choice of parameters there are not enough F -type integrals to ensure the
integrability of the system. However, Theorem 4.1 suggests that we could probably replace
the first λ missing F -integrals by λ J-integrals. Hence next, we are going to determine the
conditions on the parameters to ensure that {Jm, H} = 0, for m = 1, . . . , λ 2.

Lemma 4.5. Let a1 = a2 = · · · = aℓ = 0, aℓ+1 6= 0 and λ :=
[

ℓ
2

]

. Then,

{Jm, H} = Jm(k1 + k2 + · · ·+ k2m), (12)

for m = 1, . . . , λ.

Proof. We consider m ∈ {1, . . . , λ}. From Theorem 4.1, it follows that {Jm, H0} = 0. So,

{Jm, H} =

n
∑

j=1

kj{Jm, log xj} =

2m
∑

j=1

kj{Jm, log xj}+

n
∑

j=2m+1

kj{Jm, log xj}. (13)

Also,

{Jm, xj} =
n
∑

i=1

{xi, xj}
∂Jm

∂xi
=

j−1
∑

i=1

xixj
∂Jm

∂xi
−

n
∑

i=j+1

xixj
∂Jm

∂xi

and

xi
∂Jm

∂xi

=

{

(−1)i+1Jm , for 1 ≤ i ≤ 2m ,
0 , for 2m < i ≤ n .

Consequently, after some calculations we obtain

{Jm, xj} =

{

Jmxj , for j ≤ 2m ,
0 , for j > 2m

and {Jm, log xj} =

{

Jm , for j ≤ 2m ,
0 , for j > 2m .

Substituting this into (13), we derive (12).

1The proof of the functional independence of the integrals is given in Prop. 4.7.
2For m > λ, Jm cannot be an integral of the system i.e. {Jm, H} 6= 0. So, the total number of F and

J integrals cannot exceed n

2
− 1.
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Finally, if we combine Lemma 4.5 with Prop. 4.3 we come up with the following theorem.

Theorem 4.6. Suppose that n is even. Let ℓ denote the smallest integer such that aℓ+1 6= 0
and let λ =

[

ℓ
2

]

. The n
2
functions J1, J2, . . . , Jλ, Fλ+1, Fλ+2, . . . , Fn

2
−1, H are pairwise in

involution if and only if k2i = −k2i−1, for i = 1, . . . , λ, and Sjm = 0, for m = λ +
1, . . . , n

2
− 1, j = ℓ+ 1, . . . , 2m.

Proof. Let a1 = a2 = · · · = aℓ = 0, aℓ+1 6= 0 and λ =
[

ℓ
2

]

. From Lemma 4.5, we conclude
that {J1, H} = {J2, H} = · · · = {Jλ, H} = 0 if and only if k1 + k2 + · · ·+ k2i = 0, for all
i = 1, . . . , λ, which is equivalent to k2i = −k2i−1, for i = 1, . . . , λ. Also, from Prop. 4.3,
we derive that for m = λ + 1, . . . , n

2
− 1, {Fm, H} = 0 if and only if Sjm = 0, for every

j = ℓ+ 1, . . . , 2m (for j = 1, . . . ℓ, Sjm = 0, since a1 = · · · = al = 0). Finally, Theorem 4.1
shows that all the other pairs of functions are in involution too.

We will close this section by proving the functional independence of the integrals.

Proposition 4.7. For every even n, the functions J1, J2, . . . , Jλ, Fλ+1, Fλ+2, . . . , Fn
2
−1, H,

are functionally independent.

Proof. For k = 0, J1, . . . , Jλ, Fλ+1, . . . , Fn
2
−1, H are functionally independent. This follows

from Theorem 4.1, since in this case H coincides with H0. Hence, by continuity the same
functions remain functionally independent for parameters k in a sufficiently small open
neighborhood U of k = 0. Now, let us consider any k = (k1, . . . , kn) ∈ R

n. Then there is
µ > 0 and k′ = (k′

1 . . . , k
′
n) ∈ U , such that k = µk′. Also, in view of Remark 3.2, we can

rescale the ai parameters to µai, by setting yi = xi/µ. The Hamiltonian function in the
new y-coordinates then becomes

Hy(y) =

n
∑

i=1

(aiµyi + ki log µyi) = µ

n
∑

i=1

(aiyi + k′
i log µyi).

So, dHy = µdH ′, where H ′(y) =
∑n

i=1
(aiyi + k′

i log yi), i.e. the Hamiltonian of the
corresponding system with parameters ai and k′

i. Therefore, from the functional inde-
pendence of J1, . . . , Jλ, Fλ+1, . . . , Fn

2
−1, H

′ that we proved, the functional independence
of J1, . . . , Jλ, Fλ+1, . . . , Fn

2
−1, Hy follows and consequently the functional independence of

J1, . . . , Jλ, Fλ+1, . . . , Fn
2
−1, H for all parameters ai and ki.

5 Symmetry and superintegrability

In [13, 14], a second set of first integrals in involution has been introduced for the case
of r = 0. By considering this set of integrals we can derive more integrable cases of our
system. The main observation to accomplish this is that system (7) remains invariant under
the transformation xi 7→ xn+1−i and the reparametrization ai 7→ −an+1−i, ki 7→ −kn+1−i,

7



for i = 1, . . . , n. Let us now consider the involution ι(x1, x2, . . . , xn) 7→ (xn, xn−1, . . . , x1)
and the functions

J̃m = J ◦ ι , Ĩm = I ◦ ι , F̃m = ṽ2mĨm ,

where ṽi := an+1−ixn+1−i + an+2−ixn+2−i + · · ·+ anxn, for i = 1, . . . , n. Then, by Theorem
4.6 and the described symmetry of the system we derive the next theorem.

Theorem 5.1. Suppose that n is even. Let d denote the smallest integer such that an−d 6= 0
and let δ =

[

d
2

]

. The n
2
functions J̃1, J̃2, . . . , J̃δ, F̃δ+1, F̃δ+2, . . . , F̃n

2
−1, H are pairwise in

involution if and only if kn+1−2i = −kn+2−2i, for i = 1, . . . , δ, and S̃jm = 0, for m =
δ + 1, . . . , n

2
− 1, j = d+ 1, . . . , 2m, where

S̃jm = an+1−j(−

j−1
∑

i=1

kn+1−i +

2m
∑

i=j+1

kn+1−i) .

Theorem 5.1, determines different values of the parameters of the system that lead to in-
tegrability. Furthermore, a combination of Theorems 4.6-5.1 provide some superintegrable
cases. For any ℓ, d ∈ {0, 1, . . . , n− 1}, we consider the following two sets of parameters:

Σℓ = {(a,k) ∈ R
2n : a1 = a2 = . . . aℓ = 0, aℓ+1 6= 0, k2i + k2i−1 = Sjm = 0,

for i = 1, ...,

[

ℓ

2

]

, m =

[

ℓ

2

]

+ 1, ...,
n

2
− 1, j = ℓ+ 1, ..., 2m },

Σ̃d = {(a,k) ∈ R
2n : an = an−1 = · · · = an−d+1 = 0, an−d 6= 0, kn+1−2i + kn+2−2i = S̃jm = 0,

for i = 1, ...,

[

d

2

]

, m =

[

d

2

]

+ 1, ...,
n

2
− 1, j = d+ 1, ..., 2m },

where (a,k) := (a1, . . . , an, k1, . . . , kn). Then we conclude with the following theorem.

Theorem 5.2. If (a,k) ∈ Σℓ ∪ Σ̃d for some ℓ, d ∈ {0, 1, . . . , n− 1}, then for every even n
system (7) with parameters a,k is Liouville integrable. If (a,k) ∈ Σℓ ∩ Σ̃d, then the cor-

responding system (7) is superintegrable, i.e. it admits the following n−1 functionally inde-

pendent integrals: J1, J2, . . . , Jλ, Fλ+1, Fλ+2, . . . , Fn
2
−1, J̃1, J̃2, . . . , J̃δ, F̃δ+1, F̃δ+2, . . . , F̃n

2
−1, H.

Example 5.3. The simplest interesting case is n = 4 (for n = 2 the system is always
integrable since it is Hamiltonian). In this case we have,

Σ0 = {(a,k) ∈ R
8 : a1 6= 0, k2 = a2k1 = 0},

Σ1 = {(a,k) ∈ R
8 : a1 = 0, a2 6= 0, k1 = 0},

Σ2 = {(a,k) ∈ R
8 : a1 = a2 = 0, a3 6= 0, k2 = −k1},

Σ3 = {(a,k) ∈ R
8 : a1 = a2 = a3 = 0, a4 6= 0, k2 = −k1},

Σ̃0 = {(a,k) ∈ R
8 : a4 6= 0, k3 = a3k4 = 0},

Σ̃1 = {(a,k) ∈ R
8 : a4 = 0, a3 6= 0, k4 = 0},

Σ̃2 = {(a,k) ∈ R
8 : a4 = a3 = 0, a2 6= 0, k4 = −k3},

Σ̃3 = {(a,k) ∈ R
8 : a4 = a3 = a2 = 0, a1 6= 0, k4 = −k3},

8



0 1 2 3 4 5

0

1

2

3

4

5

 

x4

x3
0 1 2 3 4

0

1

2

3

4

5

6

 

x4

x3

0 2 4 6 8

0

2

4

6

8

10

 

x4

x3
0 1 2 3 4 5 6 7

0

1

2

3

4

5

 

x4

x3

Figure 1: The Poincaré surface of section x2 = 1, x1 > 1 for the Lotka–Volterra system with
ai = 1 and E = 6 for various ki, i = 1, 2, 3, 4 values: (a) (k1, k2, k3, k4) = (−1,−2,−1,−1)
(b) (k1, k2, k3, k4) = (−1,−2,−1,−2), (c) (k1, k2, k3, k4) = (−1,−4,−2,−3), (d)
(k1, k2, k3, k4) = (−1,−4,−2,−1).

where (a,k) = (a1, . . . , a4, k1, . . . , k4). Now, using Theorem 5.2 we can detect different
integrable and superintegrable cases. So for example, when a1 . . . an 6= 0, from Σ0 ∪ Σ̃0

we come up with two integrable cases, for k = (0, 0, k3, k4) and k = (k1, k2, 0, 0), while
the only superintegrable case that is derived from Σ0 ∩ Σ̃0 is when k = 0. On the other
hand, for a2 = 0 and a1a3a4 6= 0, we derive the integrable cases with k = (k1, 0, k3, k4)
and k = (k1, k2, 0, 0), and the superintegrable case for k = (k1, 0, 0, 0). Proceeding in this
way, we can detect all the integrable and superintegrable cases given by Theorem 5.2.

6 Numerical results for n = 4

The purpose of this section is to explore numerically the behavior of 4-dimensional Lotka–
Volterra systems of the form (1) and investigate their integrability in cases that are not
described in the previous sections. In the rest of the paper we will restrict to the case of
a1 = a2 = a3 = a4 = 1 and we vary only the ki values. We perform a series of numerical
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calculations for the system

ẋi = xi

(

4
∑

j=1

Pij(xj + kj)

)

, i = 1, . . . , 4, (14)

with different k1, . . . , k4 values, which are complementary to the two integrable cases
described by Theorem 5.2. We numerically integrate the system’s equations of motion to-
gether with its variational equations to compute the value of the largest Lyapunov exponent
λ. The variational equations of the system (14) are

δẋ = [J · ∇2H(x(t))] · δx , (15)

where δx = (δx1, δx2, δx3, δx4) is a vector which evolves on the tangent space of the system
(14) and ∇2H denotes the Hessian matrix of the Hamiltonian function H calculated along
the reference orbit x(t) of the system (14). In particular, we used the classical Runge–
Kutta forth-order scheme with time-step τ = 10−4 for the numerical integration of the
systems (14) and (15), which conserved the energy E = H(x) of the system (14) with
accuracy of more than 8 significant figures during integration times of the order of a few
thousand. The indicator which controls of the relative energy error is

RE = log10

∣

∣

∣

∣

E(t)− E0

E0

∣

∣

∣

∣

,

where E0 is the initial energy of the system and E(t) the actual energy during the numerical
integration.

For ki < 0, i = 1, . . . 4, the point x0 = (−k1,−k2,−k3,−k4) is an elliptic fixed point
of the system. Furthermore, in this case H(x) admits a global minimum at x0 and all the
orbits of the system are bounded.

We start our numerical study with examples of bounded motion, which correspond to
negative values for all ki. In Fig.1 some Poincaré surfaces of section x2 = 1, x1 > 1 are
shown for different ki < 0 values at E = 6. However, at this energy level all of them
exhibit regular behavior. These Poincaré surfaces of section are constructed for a grid of
initial conditions on the x3, x4 plane, with x2 = 1 and x1 found numerically by Newton’s
method requiring that H(x) = E. We find a rich morphology consisting of periodic and
quasiperiodic trajectories, island chains as well as separatrices. Each fixed point on the
Poincaré surface represents a periodic orbit, while the ellipse-like curves correspond to
quasiperiodic trajectories lying on tori. Fig.2 presents different trajectories projected on
the x2, x3, x4 plane for the system with (k1, k2, k3, k4) = (−1,−4,−2,−1) which corresponds
to Fig.1(d). The first three panels of Fig.2 correspond to E = 6 and the last one to E = 20.

We find qualitatively similar behavior to the examples of Fig.1 for k1 = · · · = k4 = −1,
as Fig.3 indicates. In the Poincaré surface of section x2 = 1, x1 > 1 of Fig.3(a), which
corresponds to the energy E = 4.2, there is no evidence of chaotic behavior. We verify this
result in Fig.4(a) by computing the largest Lyapunov exponent λ, which approximately
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Figure 2: 3D projections on the x2, x3, x4 plane for the system with (k1, k2, k3, k4) =
(−1,−4,−2,−1) and for initial conditions: (a) close to a fixed point of Fig.1(d) (E = 6),
(b) on an ellipse around the fixed point (E = 6), (c) randomly chosen from Fig.1(d) (E = 6)
and (d) randomly chosen at a higher total energy (E = 20) exhibiting chaotic behavior.
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Figure 3: The Poincaré surface of section x2 = 1, x1 > 1 for the Lotka–Volterra system
with ai = 1 and ki = −1, i = 1, 2, 3, 4 for the energies: (a) E = 4.2, (b) E = 6, (c) E = 8,
(d) E = 29.
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Figure 4: The largest Lyapunov exponent λ for the Lotka–Volterra system with ai = 1 and
ki = −1, i = 1, 2, 3, 4 for the energies: (a) E = 4.2 and (b) E = 29.
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Figure 5: The evolution in time of the phase space variables for the integrable cases: (a)
(k1, k2, k3, k4) = (0, 0,−1,−1) and (b) (k1, k2, k3, k4) = (−2,−2,−2, 2).

Figure 6: The trajectories projected on the 3D plane x1, x3, x4 plane for the integrable
systems: (a) (k1, k2, k3, k4) = (0, 0,−1,−1) and (b) (k1, k2, k3, k4) = (−2,−2,−2, 2).
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Figure 7: The largest Lyapunov exponent λ for the system with (k1, k2, k3, k4) =
(−2,−2,−2, 2) at (b) E = 10 and (c) E = 72.

decays as 1/t for randomly chosen initial conditions. Similarly with the well-known Hénon–
Heiles model [9], chaotic dynamics in the Lotka–Volterra system (14) for ki < 0 (or ki = −1)
emerges for larger values of the energy. In the rest of the panels of Fig.3, where the total
energy E is gradually increased, we observe a gradual transformation of fixed points and
ellipses–like curves, while at energies of the order of E = 30 (Fig.3(d)) the chaotic motion is
not only evident but also prevails over the ordered motion. The largest Lyapunov exponent
at this energy, which is plotted in Fig.4(b), converges to a positive value λ ≃ 0.01.

As we have seen in example 5.3, the only integrable cases for n = 4, a = (1, 1, 1, 1)
predicted by Theorem 5.2 are for k = (0, 0, k3, k4), k3, k4 ∈ R or k = (k1, k2, 0, 0), k1, k2 ∈ R.
We choose (k1, k2, k3, k4) = (0, 0,−1,−1), for which the quantity (x1+x2)x4/x3 is preserved
besides the Hamiltonian. Fig.5(a) displays the evolution of the four variables log xi in time
for a random choice of initial conditions. It turns out that x2 decays asymptotically to
zero, approximately like e−0.63t, while the rest variables x1, x3, x4 asymptotically approach
a periodic orbit, as is illustrated in Fig.6(a). However, a similar behavior appears in other
cases, not described as integrable by Theorem 5.2. Such an example is given in Fig.5(b)
and corresponds to (k1, k2, k3, k4) = (−2,−2,−2, 2). It turns our that the variables x2 and
x4 tend asymptotically to zero as e−2t, while x1 and x3 asymptotically converge to the
periodic orbit shown in Fig.6(b). Furthermore, we carefully examine the largest Lyapunov
exponent λ in Fig.7 for constantly increasing energies and we find that λ ∝ 1/t, even when
E = 72, which strongly indicates that the system is integrable in this case too.

Similarly to the case (k1, k2, k3, k4) = (−2,−2,−2, 2) we find other cases which display
integrable behavior, manifested by asymptotically vanishing Lyapunov exponents. Few of
the cases that we checked are listed in the following table
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k1 k2 k3 k4
1 1 -1 -1
1 -1 1 -1
1 -1 -1 1
-1 -1 1 -1
-1 1 -1 -1
1 -1 -1 -1

Finally, based on our numerical findings and observations, we conjecture that chaotic
motion for the n = 4 system (7) emerges when ai > 0, ki < 0 and ai < 0, ki > 0.

7 Conclusions

We presented a new class of Hamiltonian parametric Lotka–Volterra systems with non-zero
linear terms and we proved that, for particular choices of parameters, Liouville integrability
and superintegrability is established. Different choices of parameters when n = 4, not
described by the theory, were studied numerically, showing that both chaotic and new
integrable cases appear. Concerning these new cases with integrable behavior, we aim to
study them in detail in order to detect additional integrals and complete our investigation
by including all the odd dimensional cases too.

In the present work we restricted our analysis to the even-dimensional case; however, a
similar approach can be considered for odd dimensions. Finally, we believe that a similar
approach can be considered for integrable Lotka–Volterra systems with different community
matrices, or integrable deformations of them such as the systems presented in [6, 7, 8], by
inserting parametric linear terms in the corresponding vector fields.
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A Comments and examples on the odd dimensional

cases

As it is stated in Section 3, in the odd dimensional cases the described Hamiltonian for-
malism, i.e. the log-canonical Poisson structure (6) along with the Hamiltonian H(x) =
∑n

i=1
(aixi + ki log xi), is not sufficient to include all the cases of vector fields (1) for arbi-

trary ri, since matrix (5) is not invertible. Therefore, in this setting we can only restrict
to the cases with r = Pk, that is systems of the form (7). For n = 3, the integrability
of (7) follows directly from its Hamiltonian formalism and the existence of the Casimir
function x1x3

x2
. More interesting integrable cases emerge for odd n > 3, by considering the

corresponding integrals of the k = 0 case as they appear in [14] and the corresponding
permutation symmetry of the system. We will illustrate this in the following example for
n = 5.

Let us consider the system

ẋi = xi

(

5
∑

j=1

Pij(ajxj + kj)

)

, i = 1, . . . , 5, (16)

with parameters a = (a1, . . . , a5),k = (k1, . . . , k5) ∈ R
5. According to [14], for k = 0 this

system admits the first integral

F =
x5

x4

(a1x1 + a2x2 + a3x3).

We compute its Poisson bracket with the Hamiltonian H =
∑n

i=1
(aixi + ki log xi) of (16)

to get

{F,H} =
x5

x4

(a1(k2 + k3)x1 + a2(k3 − k1)x2 − a3(k1 + k2)) .

Hence, F is a first integral of (16) if and only if

a1(k2 + k3) = a2(k3 − k1) = a3(k1 + k2) = 0. (17)

If the parameters a,k satisfy (17), then the integral F in addition to the Casimir function
C = x1x3x5

x2x4
ensures the complete integrability of the system. Furthermore, the invariance

of (16) under the transformation xi 7→ x6−i, ai 7→ −a6−i, ki 7→ −k6−i, implies that

F̃ =
x1

x2

(a5x5 + a4x4 + a3x3).

is a first integral of (16) if and only if

a5(k4 + k3) = a4(k3 − k5) = a3(k5 + k4) = 0. (18)

So we conclude that system (16) is integrable if the parameters a,k satisfy (17) or (18).
For example, in the case of a 6= 0, system (16) is integrable if k3 = −k2 = k1 or k3 =

−k4 = k5, while the case of k5 = −k4 = k3 = −k2 = k1 which leads to superintegrability is
equivalent to the k = 0 case.
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