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ABSTRACT 
 

With Europe’s ageing fleet of nuclear reactors operating closer to their safety limits, 
the monitoring of such reactors through complex models has become of great 
interest to maintain a high level of availability and safety. Therefore, we propose an 
extended Deep Learning framework as part of the CORTEX Horizon 2020 EU project 
for the unfolding of reactor transfer functions from induced neutron noise sources. 
The unfolding allows for the identification and localisation of reactor core perturbation 
sources from neutron detector readings in Pressurised Water Reactors. A 3D 
Convolutional Neural Network (3D-CNN) and Long Short-Term Memory (LSTM) 
Recurrent Neural Network (RNN) have been presented, each to study the signals 
presented in frequency and time domain respectively. The proposed approach 
achieves state-of-the-art results with the classification of perturbation type in the 
frequency domain reaching 99.89% accuracy and localisation of the classified 
perturbation source being regressed to 0.2902 Mean Absolute Error (MAE).  

 
 
1. Introduction 
 

The early detection, classification, and localisation of anomalies within the reactors’ core is 
vital to ensure the safe and efficient operation of the increasingly aging fleet of Europe’s 
reactors. Monitoring of these reactors at nominal conditions provides vital and valuable insights 
into the functional dynamics of the core, consequently allowing for early identification of 
anomalies. Analysis of the core operation is achieved through non-intrusive measuring of 
neutron flux around their mean values from in-core and ex-core detectors. These fluctuations 
more commonly referred to as noise are induced primarily from turbulent characteristics in the 
coolant flow in the core, coolant boiling, or mechanical vibrations of reactor’s internal 
components.  
 
Given detailed descriptions of the reactor core geometry, properties of physical perturbations, 
and probabilities of neutron interactions, by using a Green’s function as the reactor transfer 
function, simulations can be constructed to show the effect of the neutron noise. Green’s 
function holds the relationship between a locally induced perturbation and the response of the 
neutron flux within the core, therefore, the inversion of this function from noise readings can 
localise and classify such induced perturbations. This inversion known as the backwards 
problem or unfolding is trivial given measurements at every position within the core, however, 
the limited number of in-core and ex-core detectors makes it a complex challenge [1]. 
 
Machine learning (ML) is a data analytical process for the approximation of functions mapping 
a set of inputs to outputs. Therefore, the use of ML to approximate such reactor functions given 
limited detector readings is advantageous, learning high and low-level patterns given 
substantial training examples. This work presents an extended 3D-Convolutional and 
Recurrent neural network approach to unfold the reactor transfer function and classify induced 
perturbation types and their source locations in both time and frequency domains. 
 
 
 



2. Related Work 
 

The application of ML approaches in the field of nuclear safety has been of recent scientific 
interest, with nuclear energy essential to meeting fast changing climate goals. The ML 
community has been keen on predicting climate change [2] utilising a variety of approaches 
across all energy sectors. Nuclear energy relies on safety and availability to achieve such 
goals, and many recent works have been proposed to ensure this.  
 
In [3] the authors utilised deep convolutional neural networks and Naïve-Bayes approaches 
for vision-based crack detection for reactor component surfaces from video sequences. A 
diagnosis system monitoring the condition of sensors using auto-associative kernel regression 
and sequential probability was proposed in [4]. Deep rectifier neural networks were 
implemented in [5] for the accident or transient scenario identification of pressurised water 
reactors (PWR), whereas others solved similar problem employing artificial neural networks 
improving condition-based maintenance [6]. Further ML approaches were implemented by [7] 
in the form of Adaptive Neuro-Fuzzy Inference System (ANFIS) for the prediction of critical 
heat flux. For unfolding, ANFIS approaches have also been utilised for the localisation of 
simulated induced neutron noise sources in VVER-100 rectors, given neutron pulse height 
distributions as training input [8-9]. 
 
Work proposed in [10] unfolds reactor transfer functions by the means of CNNs from simulated 
neutron noise readings in the frequency domain at differing perturbation types and frequencies. 
Classification and localisation of the perturbations had been achieved with low error by the 
means of a 2D-CNN. The localisation of the perturbation source was achieved through the 
spatial splitting of the core volume into 12 and 48 subsections for classification of source 
perturbation belonging to a particular subsection. Furthermore, an increased unfolding 
resolution for localisation was implemented, utilising the extracted latent variables from the 
CNN and clustering. [11] proposed a 3D-CNN approach to combat the limitations of the 2D 
implementation in [10] from the loss of spatial information through the conversion of the 3D 
volume into a 2D input. Moreover, [11] included the classification of time domain signals 
processed to extract temporal information via RNNs. This work extends the approaches 
previously developed in [10] and [11] to larger, more complex simulation scenarios, including 
the localisation of perturbations in the time domain. 

 
3. Simulated Scenarios and Data Pre-Processing 
 

The process of training ML models requires large amounts of training data, representing 
instances for which known perturbations are assumed and the corresponding induced neutron 
noise readings are estimated. The known data allows the system to learn the function mapping 
detector readings to their classification and origin, i.e. transfer function inversion, or unfolding. 
To obtain this amount of training data it is necessary to simulate scenarios to practically provide 
enough examples of differing anomaly types and source locations for effective unfolding. To 
achieve this, simulations determining the reactor transfer function or Green’s function, 
providing detector readings of the induced neutron noise of a given perturbation scenarios for 
pressurised water reactors (PWR) have been employed in both the time and frequency 
domain.   
 
3.1 Frequency Domain 
 

Modelling of fluctuations in neutron flux given known perturbations in the frequency domain 
was achieved through the CORE SIM [12] reactor physics codes, generating neutron detector 
readings of the induced neutron noise in a PWR for five perturbation scenarios. CORE SIM 
models the effects of a noise source for a three-dimensional reactor core, of cylindrical shape 
in Cartesian geometry for a reactor transfer function – considered to be the Green’s function 
of the system – capturing the response of the fluctuations of the induced neutron flux from 
known perturbation distributions. The Green’s function provides a one-to-one relationship 
between any location of perturbation and the response of the neutron flux at any position within 
the core. CORE SIM models a PWR with a radial core of size 15x15 fuel assemblies, utilising 



a fine volumetric mesh of 32x32x34 voxels modelling sub-assembly response, including 
boundary sources. For further details, consult the CORE SIM user manual [13],[12]. 

 
Fig 1. Examples of the amplitude induced neutron flux in the frequency domain for a single azimuthal 
slice on the 10th axial plane. Left: Absorber of Variable Strength. Middle: Core Barrel Vibration - Right: 

Vibrating Fuel Assembly, cantilevered. 

CORE SIM provides five perturbations scenarios in 34 frequencies (0.1-1.0Hz with a step of 
0.1Hz and 1.0-25.0Hz with a step of 1.0Hz) each with two energy groups, i.e. high and low 
energy spectrum, referred to as Fast and Thermal groups respectively. The five scenarios 
include: Absorber of Variable Strength, the perturbation of the thermal macroscopic absorption 
cross-section; Axial-Travelling Perturbations, perturbation of the coolant at the velocity of the 
coolant flow; Fuel Assembly Vibrations, vibration of a fuel assembly in the x- and/or y-direction 
for differing modes cantilevered beam, simply supported for the first mode (0.8-4.0Hz), simply 
supported in the second mode (5.0-10.0Hz), and cantilevered beam and simply supported for 
both modes; Control Rod Vibrations,  vibration of a one-dimensional structure along the z-
direction vibrating perpendicularly to the two-dimensional (x,y) plane; Core Barrel Vibrations, 
perpendicular or beam mode of vibration in both the in-phase and out-of-phase modes. 
Examples of these perturbations can be seen in Fig 1 for an axial cross section of the core 
volume.  

3.1.1 Data Pre-Processing 
The signals produced are complex 3D volumes of the size of the fine volumetric mesh 
(32x32x34 voxels), representing the induced neutron noise at every point within the core 
volume for a given perturbation originating from a specific positional coordinate within the core 
(i, j, k). The signal volumes are provided as the response in both fast and thermal groups, 
however, for our experimentation only the thermal group is utilised due to neutron detectors 
being more sensitive to thermal neutrons. The dataset is comprised of 34 frequencies each 
containing a minimum of 106176 data examples across all scenarios, and have been split into 
training, validation and testing sets via frequency and source location per scenario. 
 
To mimic the signals from real plant detectors, a pre-determined number of voxel locations 
have been selected from the whole 32x32x34 volume to emulate the number of detectors 
within the simulated core. In our case 48 in-core and 8 ex-core detectors have been used from 
their volumetric positions for the modelled core layout. Furthermore, to emulate reality, the 
Auto-Power Spectral Densities (APSD) and Cross-Power Spectral Densities (CPSD) for the 
simulated signals have been calculated to coincide with real plant readings. Additionally, to 
demonstrate the robustness of the proposed network white Gaussian noise has been added 
to the signals in two signal-to-noise ratios (SNR), SNR=3 and SNR=1. Finally, as Deep Neural 
Networks (DNNs) currently cannot easily implement complex signals, each of the complex 3D 
volumes is decomposed to its amplitude and phase. The now two volumes are concatenated 
together channel-wise to form a 2x32x32x34 volume. 
 
3.2 Time Domain  
 

The determination of the reactor transfer function in the time domain was employed by the 
Simulate-3K (S3K) algorithm [14], modelling 48 in-core and 8 ex-core neutron detectors for the 
four-loop, Westinghouse, PWR mixed core of the OECD/NEA transient benchmark. S3K has 
been utilised to perform 27 different scenarios comprised of 6 perturbation settings and their 
combinations: Fuel Assembly Vibration of the central 5x5 cluster, vibrating synchronously in 
the x- or y-direction at a frequency of 1.5Hz (sine wave) or random (white noise); Fluctuations 



of the Coolant Flow, at ±1% from the relative mean amplitude; Fluctuations of the Coolant 
Temperature, at ±1ºC from the mean value of 286.7 ºC. These perturbations distributions have 
been performed with core operating conditions similar to the aforementioned frequency domain 
model.  

 
S3K simulates each of the scenarios with a duration of 100 seconds sampled at 0.01 time 
steps for each of the 48 in-core and 8 ex-core detectors. The detectors are positioned at 8 
azimuthal locations at 6 axial levels for in-core and distributed at 4 azimuthal locations at 2 
different axial locations for the ex-core. In addition to the above classification scenarios, 
individual fuel assembly vibrations for all 193 azimuthal locations within the core have been 
modelled for 5 different scenarios of 4 perturbation settings including combinations of the 4: 
Fuel Assembly Vibration in the x-direction at a frequency of 1.5Hz (sine wave) or random (white 
noise); Fluctuations of the Coolant Flow, at ±1% from the mean value; Fluctuations of the 
Coolant Temperature, at ±1ºC from the mean value of 286.7 ºC. These scenarios have been 
experimented for the classification and localisation of the perturbing fuel assembly. For further 
technical details on S3K refer to the user manual [14]. 

3.2.1 Data Pre-Processing 
The signals produced by S3K are presented as 
10001-dimensional vectors per each of the 56 
detectors for each scenario, representing the 
neutron readings of the induced neutron flux. Due 
to the limited number of data samples available, 
data augmentation was performed to increase 
the number of samples per detector per scenario, 
and to reduce the large input size into the DNN. 
To achieve this a sliding window of width 100 
time-steps and stride 25 was used to represent a 
1 second input to the network, this produced the 
vector 𝑥	 ∈ 	ℝ	%&'×)** per detector. Furthermore, 
splitting the data into training, validation, and 
testing sets has been accomplished via the 
position of the detector, this means specific 
detector locations have been split into differing sets to the description in Fig 2 per axial position 
of the detectors. Finally, to further test the robustness of the proposed networks, white 
Gaussian noise has been added to the signals at two SNRs, SNR=5 and 10. 
 
Additionally, for the localisation of fuel assembly vibrations, the same sub-sampling process 
has been undertaken; however, all 56 detectors for a 1 second sample are considered to be 
one input into the network. Therefore, the split of data has been achieved through the source 
location of the vibrating fuel assembly, ensuring the same assembly is not present between 
sets. The same process of applying white Gaussian noise have also been applied to study the 
effect on the network at SNR=3 and SNR=1, at higher levels of noise, due to the added 
robustness of utilising all possible 56 detectors as input. 
 
4. Approach  
 

ML and more specifically Deep Learning (DL) are a set of powerful algorithmic approaches for 
data analytics and pattern recognition, applying iteratively learnt knowledge to unseen data for 
decision making tasks without being explicitly programmed. DL is a subset of ML, utilising 
multiple stacked layers of Artificial Neural Networks (ANN) – inspired by biological neurons – 
to extract varying levels of information, hence the term deep. The proposed approaches utilise 
modern deep learning techniques and architectures extracting valuable pattern information 
from the input signals to iteratively learn the inverse of the reactor transfer functions. 
 
 

Fig 2. Modelled core layout with 8 in-core and 
4 ex-core detector locations shown for one 
axial plane. Corresponding train, test and 

validation detector splits shown, with central 
5x5 FA cluster shown in red. 



4.1 3D Convolutional Neural Network  
 

Convolutional Neural Networks (CNNs) [15] are specialised ANNs designed for spatial feature 
extraction from data with known grid-like topologies, i.e. images. CNNs replace the traditional 
matrix multiplication of ANNs with the convolution operation extracting spatial features. 
Moreover, improving efficiency with the capability of learning coarse to fine features through 
the addition of more CNN layers, extracting complex hierarchical concepts from such features. 
Convolutional layers utilise a set of kernels, learning a corresponding number of filters that to 
capture these spatial patterns pertaining to the given input. Formally, computing the activation 
of a convolutional layer ℓ and feature-map 𝑓 at positions 𝑖, 𝑗, 𝑘 is given by  
 

𝑎2,3,4
[ℓ,6] = 	𝜙(𝑛2,3,4

[ℓ,6] + 𝑏[ℓ,6]) ( 1 ) 
      

where 𝜙 is a non-linear activation function such as Rectified Linear Units (ReLU: 𝑓(𝑥) =
𝑚𝑎𝑥(0, 𝑥)) and 𝑏 is a learnt bias 𝑛2,3,4

[ℓ]  is given by 
 

𝑛2,3,4
[ℓ] = 	AAA𝑊C,D,E

[ℓ]
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 ( 2 ) 

 

where 𝑊[ℓ] is a kernel of learnt weights in layer ℓ with dimensions 𝑋 × 𝑌 × 𝑍, convolved with 
the activations from the previous layer 𝑊[ℓ] ∗ 𝐴[ℓG)]. This produces a weighted sum per location 
of all points within a kernels receptive field of the previous layers’ activations. Visual examples 
of the features learnt via the convolution operation can be seen in Fig 4. 
 
Given the volumetric nature of the signals in the frequency domain and the task of localisation, 
it is necessary to obtain spatial relationships and patterns within the data volume. Therefore, 
this work proposes a modified, densely-connected, 3D-CNN for the volumetric feature 
extraction of simulated neutron detector readings seen depicted in Fig 3.  

 
Fig 3. The proposed Densely-connected 3D CNN architecture, depicting an example dense block of 2 

layers and growth rate of 32. The Fully-connected and output layers can be seen right of the GAP, 
each unit represents a classification perturbation type or the source (i,j,k) location to be regressed. 

The network depicted in Fig 3. shows the architectural construction of the 3D CNN, comprised 
of three dense blocks modified from the 2D variant to allow for the 3D volumetric input. Dense 
blocks [16] are an DNN architectural design, utilising several CNN developments, with its main 
advantage being the use of dense connections. These connections allow for a greater flow of 
information between layers during the forward and backward pass of the backpropagation 
procedure, resulting in the reduction of vanishing gradients and achieving better performance. 
These connections are simply concatenations, where the ℓRS	 hidden layer 𝐻ℓ receives as input 
the feature-maps all preceding layers within that block. 

𝑋ℓ = 𝐻ℓ([𝑋*, 𝑋), … , 𝑋ℓG)]) ( 3 ) 

In addition to the dense connections, the network employs 1x1x1 kernel convolutions with 
stride 1 for the reduction in feature dimensionality following dense connections, furthermore, 
1x1x1 kernels reduce network parameters whilst increasing network complexity, further 



assisting the parameter large 3D convolution operation [17]. The dense blocks each contain 
𝑙 =	20 layers with growth rate of 𝑘 =	 6, for further details please refer to [16]. All convolutional 
layers are followed by the commonplace procedure: convolutional layer → Batch Normalization 
(BN) → and ReLU activation. BN normalises the activations output by the convolutional layer 
improving network stability, ReLU is a non-linear activation function with sparse activation, 
further assisting in the reduction of vanishing gradients. Furthermore, the proposed network 
replaces the pooling operation with strided convolutions for dimensionality reduction, retaining 
spatial structural information from the input vital for the localisation of perturbation sources. 
 
The last convolutional layer of the network outputs a representational feature vector of the 
input of size 256 via Global Average Pooling (GAP) layer [17], fully connected to two output 
layers for perturbation classification and localisation. GAP directly outputs the spatial average 
over the feature maps, resulting in a vector  𝑉	 ∈ 	ℝ	X	where m is the number of feature maps. 
The output layer for classification is comprised of 9 non-linear, sigmoid units each for the 
occurrence of the individual perturbation types (nine types as modes of fuel assembly vibration 
are considered as classes of perturbation). For localisation three linear units have been 
employed each representing the (i, j, k) coordinates of the perturbation source to be regressed.  

 
Fig 4. Sample of 12 learnt feature-maps from the output of first dense block for the input of vibrating 

fuel assembly at (8,16) given all possible detectors. Visually depicting how the differing layers highlight 
different features of the image. (a) shows a peak at the source of vibration, (d) the response on the 

core barrel, (j) the noise dissipating throughout the core. 

Training the network has been achieved via implementing the multi-task loss approach from 
[11], minimising the weighted sum of losses per task (classification and localisation) with a 
weight coefficient identifying the impact each tasks loss in the training procedure. For 
classification the network aims to minimise the negative log-likelihood (NLL) 

𝑁𝐿𝐿 =	−
1
𝑁A𝑦2 ∙

^

2H)

log(𝑦b2) + (1 + 𝑦2) ∙ log(1 − 𝑦b2) ( 4 ) 

and for localisation regression, minimises the L2 loss, or mean squared error (MSE) 

𝑀𝑆𝐸 =	
1
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^
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 ( 5 ) 

where 𝑦2 and 𝑦b2 are the true and predicted values of the network for 𝑁 number of examples. 
As previously alluded the 3D CNN network is trained minimising a weighted sum of losses  
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( 6 ) 

where 𝑃 and 𝐶 are the number of perturbation classes and source location coordinates 
respectively,  𝜆) and 𝜆g are the manually tuned hyper-parameter weight coefficients for each 
task loss, classification and localisation regressing respectively. This objective is minimised 
given 𝑋 as input data with respect to 𝑾 parameters (weights and biases). 
 
4.2 Long Short-Term Memory, Recurrent Neural Network  
 

Time domain signals hold temporal information within their sequential structure, therefore, a 
differing approach to previously described is necessary to capture these time-dependent 



features. To more appropriately capture the relationships within the detector signals, Recurrent 
Neural Networks (RNN) have been employed. RNNs utilise recurrence to allow information 
about previous time-steps to persist within the network informing current and future time-step 
cells across the sequence. RNNs in principle formulate a non-linear output 𝐴R from both the 
input data 𝑥R at that given time-step and the activation of the previous timesteps cell 𝐴RG), 
where 𝜙 is a non-linear activation function such as hyperbolic tangent (tanh): 

𝐴R = 	𝜙(𝑥R, 𝐴RG)) ( 7 ) 

Long Short-Term Memory (LSTM) [18], a variation of RNNs have been incorporated in this 
work for their ability to learn long term dependencies across long sequences, ideal for the 100 
time-step sequences in question. It achieves this ability with the use of memory gates, 
regulating and learning how much to ‘remember’ from previous cell states and how much to 
contribute from the current data input. Initially, the forget gate determines what to remember 
from the previous cell state 𝐶RG) given activation 𝐴RG). To decide what new information will be 
added to the current cell state, an input gate 𝑖x and candidate values Czx are generated. 
 

fx = 	σ(𝐖~ ∙ n	AxG),xxr + b~) 
ix = 	σp𝐖� ∙ n	AxG),xxr + b�q 

Czx = tanhp𝐖� ∙ n	AxG),xxr + b�q 
Cx = 	 fx ⊙ CxG) + ix	 ⊙	Czx 

( 8 ) 

 

The outputs of these gates are combined to create an update the previous cell state to the cell 
state Cx via the forgetting and updating previously computed through learnt weights. The output 
gate is employed to control what should be output from the newly computed cell states, 
outputting a non-linear activation	Ax to the subsequent cells. 

 

ox = 	σp𝐖� ∙ n	AxG),xxr + b�q 
Ax = 	ox 	⊙ tanh(Cx) 

( 9 ) 

 

Further details of the intuition of LSTMs can be found in [18], with the above process visually 
depicted in Fig 5 within each of the LSTM cells. 

 

 
Fig 5. LSTM RNN architecture proposed for the classification task, outputting a 512-dimensional 

representational vector of the input to a 6-unit classification layer. The LSTM units take in input from 
the bottom, xx, with all gates depicted in each LSTM cell. 

The network proposed solely for the classification task incorporates a LSTM network 
comprised of 2 stacked layers. Each cell within those layers contains 512 units, outputting a 
512-dimensional feature representation vector of the single sensor input for 1 second, depicted 
in Fig 5. This network outputs to 6 non-linear sigmoid units for the classification of the presence 
of individual perturbations from one detector reading. Dropout [19] of 25% drop probability, has 
been employed in the LSTM network regularising the effects of overfitting, setting a percentage 
of the unit activations to zero, limiting the networks learning capacity. The LSTM network has 
been trained to minimise the negative log-likelihood with respect to the parameters 𝐖 and 
input x as noted in ( 6 ). 
 
Localising vibrating fuel assemblies has been achieved employing the same core LSTM 
architecture as aforementioned, with the addition of a linear output layer, fully connected to the 
512-dimensional representation vector for the regression of azimuthal coordinates. The 
training of this network has been achieved by minimizing the weighted sum of each loss per 
task, as to the definition in ( 6 ).  



5. Experimental Results 
 

5.1 Frequency Domain  
 

The subsequent experiments show the results of reactor transfer function unfolding for the 
classification and localisation of induced perturbations given the neutron flux from simulated 
neutron detectors in the frequency domain from the proposed densely connected 3D CNN. 
The experiments have been implemented utilising the Pytorch numerical computation library 
trained via backpropagation, minimising the multi-task loss criterion in 4.1 with the Adam 
optimizer with its proposed parameters as in [20]. A batch size of 32 has been used, trained 
on an 8-core, 16-thread Intel CPU system, with 4 Nvidia 1080ti GPUs and 94GB of RAM, each 
model being trained 3 times and the mean and standard deviation being taken as the result.  
 
Two experiments were conducted on the volumetric signals, the first using different sized splits 
of training, validation, and testing data to more appropriately represent the limited amount of 
data available from real plant readings, the subsequent results can be seen in Tab 1. 
Furthermore, the results from the utilisation of detector readings from all possible voxel 
positions within the reactor core and only 48 in-core detectors are also shown, where the 48 
in-core detectors are located corresponding to the layout of the core modelled in 3.1. For the 
latter experiment, the volumetric signals were corrupted with white Gaussian noise, as 
described in 3.1.1 to test the robustness of the proposed system in adverse conditions. 
 

3D-CNN Results of Classification and Localisation 

Sensors Train / Valid / 
Test (%) 

Classification Localisation 

Accuracy (%) F1-Score MAE MSE 

All 70 / 15 / 15 99.94 ± 0.051 0.9344 ± 0.004 0.1435 ± 0.011 0.0342 ± 0.008 

48 In-Core 70 / 15 / 15 99.89 ± 0.010 0.9311 ± 0.001 0.2902 ± 0.011 0.3072 ± 0.014 

48 In-Core 25 / 15 / 60 99.68 ± 0.025 0.9149 ± 0.002 0.3978 ± 0.017 0.6407 ± 0.052 

48 In-Core 15 / 25 / 60 99.56 ± 0.061 0.9141 ± 0.003 0.4858 ± 0.017 0.7727 ± 0.006 

Tab 1. Results of the proposed 3D-CNN for the classification and localisation of perturbation type and 
source location (i,j,k). Mean and standard deviation of 3 runs. 

3D-CNN Results of Classification and Localisation with the addition of noise. 

Noise Train / Valid / 
Test (%) 

Classification Localisation 

Accuracy (%) F1-Score MAE MSE 

No Noise 70 / 15 / 15 99.89 ± 0.010 0.9311 ± 0.001 0.2902 ± 0.011 0.3072 ± 0.014 

SNR = 3 70 / 15 / 15 99.85 ± 0.006 0.9231 ± 0.001 0.3456 ± 0.016 0.4905 ± 0.011 

SNR = 1 70 / 15 / 15 99.81 ± 0.036 0.9225 ± 0.002 0.3709 ± 0.020 0.5185 ± 0.017 

Tab 2. Results of the proposed 3D-CNN for the classification and localisation of perturbation type and 
source location (i,j,k) with the corruption of input signals at SNR=3 and SNR=1. 

The results in Tab 1 show that the proposed 3D CNN models perform highly in the classification 
task across all testing splits, with 99.89 ± 0.010% accuracy in the best case and 99.56 ± 
0.061% in the worst, respectively achieving an F1-score of 0.9311 ± 0.001 and 0.9141 ± 0.003. 
F1-score is an alternative measure of accuracy of prediction and target, as a function of 
precision and recall 

 

F1	Score = 2	 ×
Precision	 × Recall
Precision	 + Recall 

( 10 ) 

where 
 

Precision =
True	Positive

True	Positive + False	Positive 	Recall =
True	Positive

True	Positive + False	Negative 
( 11 ) 

 

computed from the confusion matrix of predicted values of the network and true values of the 
data. F1-score lies within the range [0.0,1.0] where 1 is perfect precision and recall. The 
regression results of the perturbation source coordinates observed in Tab 1 show low error 



was achieved, with a best case of 0.2902 ± 0.011 and 0.3072 ± 0.014 for the mean absolute 
error (MAE) and mean squared error (MSE) respectively. In relation to the core volume, this is 
approximately 4cm localisation error in an 4m x 4m x 4m reactor core utilising only 48 
detectors.	Tab 2 shows the results with the addition of signal corruption of the volumetric 
signals, with a worst case of 99.81 ± 0.036% accuracy, 0.9225 ± 0.002 F1-score and 0.3709 
± 0.020 MAE for classification and localisation respectively, demonstrating the robustness of 
the proposed approach with minimal deviation from the best performance of no corruption.  
 
5.2 Time Domain 
 

Experimentation in the time domain for the 
unfolding of the reactor transfer function for the 
classification of perturbation type has been 
achieved via individual neutron detector 
measurements as described in 3.2.1. Tab 3 
displays the results of the one second samples 
for the 27 scenarios of 6 perturbation settings 
under different SNRs of signal noise 
corruption. The finalised results are the mean 
and standard deviations of 3 training runs, 
trained via backpropagation with the RMSprop optimizer [20] with default settings and learning 
rate of 0.0001, and utilising a batch size of 64. The results show that given just 1 second 
readings from one neutron detector our approach can accurately classify the perturbation type 
with a best case of 96.41 ± 0.021% accuracy, the addition of noise has shown that although 
performance degrades, the system is robust given such minimal data input. 
 
Localisation of vibrating fuel assembly source takes a similar approach utilising the same 
training procedure except for the minimisation criterion, replacing with the multi-task loss in ( 6 
). Additionally, all 56 detectors have been utilised – compared to the previous experiment of 
individual detectors – to obtain spatial information between the detectors to infer the perturbing 
fuel assembly location. Corrupting the signals with white Gaussian noise has also been applied 
to test the robustness of the proposed approach, the resulting error of localisation can be seen 
in Tab 4. Localisation in the time domain has been achieved with low localisation error with a 
worst case of 1.2304 ± 0.102 and 3.2340 ± 0.612 under SNR=1, and a best of 1.0737 ± 0.006 
and 2.3682 ± 0.065 for MAE and MSE respectively. 

LSTM Classification and Localisation Results 

Noise 
Classification Localisation 

Accuracy (%) F1-Score MAE MSE 

Clean Signal 99.89 ± 0.396 0.9976 ± 0.003 1.0737 ± 0.006 2.3682 ± 0.065  

SNR = 3 99.87 ± 0.032 0.9980 ± 0.001 1.1191 ± 0.008 2.7316 ± 0.006 

SNR = 1 99.46 ± 0.318 0.9962 ± 0.004 1.2304 ± 0.102 3.2340 ± 0.612 

Tab 4. Localisation of the coordinates of a vibrating fuel assembly (i,j), in the time-domain utilising the 
proposed LSTM architecture, under input signal corruption. Mean and standard deviation of 3 runs. 

6. Conclusions and Future Work  
 

This work proposed an extended approach to the unfolding of reactor transfer functions for the 
classification and localisation of reactor core perturbations from neutron detector readings 
produced by simulated core models. The proposed models accurately classify perturbation 
types and source locations in the time and frequency domain, with extended and more complex 
simulated perturbation scenarios than previous work [11,12]. Our approach outperforms 
previous approaches for the same task localising such perturbations to a finer voxel mesh and 
with fewer detectors available, i.e. 48 in-core detectors for a 32x32x34 core volume. 
 
Our experiments further solidify the applicability and capability of deep learning approaches in 
the domain of nuclear reactor anomaly detection, specifically for the non-trivial task of reactor 

LSTM Classification Results 

Noise Accuracy (%) F1-Score 

Clean Signal 96.84 ± 0.491 0.9342 ± 0.003 

SNR = 10 91.88 ± 0.254 0.8107 ± 0.007 

SNR = 5 88.87± 0.279 0.7469 ± 0.006 

Tab 3. Classification of perturbation type in the 
time domain under differing levels of input signal 

noise corruption from induvial detector inputs. 



transfer function unfolding given very spare neutron flux detector readings. We will continue to 
extend our approaches to localising and classifying large combinations of perturbations 
simultaneously. Furthermore, investigations will be made to apply our model to real plant data 
providing further validation of the capability of our approach for on-line anomaly detection. 
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