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The polySTRAND model of flow-induced nucleation in polymers
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We develop a thermodynamic continuum-level model, polySTRAND, for flow-induced nucleation
in polymers suitable for use in computational process modelling. The model’s molecular origins
ensure it accounts properly for flow and nucleation dynamics of polydisperse systems and can be
extended to include effects of exhaustion of highly deformed chains and nucleus roughness. It
captures variations with the key processing parameters, flow rate, temperature and molecular weight
distribution. Under strong flow, long chains are over-represented within the nucleus, leading to
super-exponential nucleation rate growth with shear rate as seen in experiments.

PACS numbers: 64.70.km, 64.60.qe, 83.80.Sg

Crystal nucleation in polymers is strongly enhanced by
flow [1, 2], and this flow-induced crystallisation (FIC) is
a prominent unsolved problem in polymer physics. FIC
is an externally driven, non-equilibrium phase transition
that controls crystallisation in industrial polymer pro-
cessing. Hence, a molecular understanding of FIC would
enable design of semi-crystalline products by tailoring
processing conditions. This requires a quantitative model
for the key control parameters of temperature, flow rate
and molecular weight distribution (MWD).

Flow rapidly accelerates the crystallisation kinetics
through an enhanced nucleation rate, Ṅ (see Fig.1). Be-
yond this, even stronger flow produces the aligned shish
kebab morphology [2–4]. Both nucleation and alignment
increase with flow rate, strain, molecular weight and long
chain concentration [3–12]. Despite substantial experi-
mental progress, key obstacles remain [13]: (1) nucleation
events are rare, rapid and spatially localised, so exper-
iments make observations long after critical nucleation
has occurred; (2) synthesising monodisperse crystalliz-
able polymers is difficult so most FIC experiments in-
volve broad MWDs. Under flow, such melts have a wide
range of chain deformation, and nucleation results from
the cooperation of many chains of widely differing defor-
mation and concentration. Polydispersity is ubiquitous
in experiments and processing, but obscures the central
physics of flow-induced nucleation (FIN).

Molecular dynamics (MD) simulations can comple-
ment experiments. Recent simulations have resolved
individual nucleation events from monodisperse chains,
to quantify FIN [14–19]. Simulations of 150-carbon
polyethylene [15], showed that the Kuhn segment ne-
matic order, P2,K , is the key parameter for FIN. However,
MD simulations cannot reach the MWD and undercool-
ing required to directly model experiments or industrial
processing. At much higher coarse-graining, continuum
models comprise deterministic differential equations [20–
24]. These can access long spatiotemporal scales but
currently struggle with polydispersity: they use insuffi-
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FIG. 1. Steady-state Ṅ measurements against γ̇ for an iPP
melt[9] and the polySTRAND model predictions. The total-
stress model pre-averages chain deformation into a single
species.

ciently detailed rheological models and do not account
for nucleation from multiple chains with different de-
formations. At intermediate coarse-graining is the GO
model [25, 26], which simulates the nucleation dynam-
ics stochastically but uses a constitutive equation for the
amorphous chain dynamics. It can access long chains and
low-undercooling. Despite encouraging comparisons with
experiments [25, 27], the model lacks a constitutive equa-
tion valid for polydisperse melts [25] and is too expensive
for computational modelling of polymer processing [13].

We present a comprehensive resolution to the above
long-standing issues by uniting multiple levels of coarse-
graining, including MD, kinetic Monte Carlo and contin-
uum modelling, to produce a computationally fast an-
alytic model with deep molecular roots: we recalibrate
the GO model to recent MD simulations [15]; we use a
recent constitutive equation [28] for polydisperse melts;
and we derive a novel analytic solution of the GO model
[25, 26]. This leads to a fully polydisperse model of FIN
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- the POLYdisperse STRain Accelerated Nucleation Dy-
namics (polySTRAND) model. We derive two sub mod-
els: GO-polySTRAND closely captures the GO model;
smooth-polySTRAND captures experiments by includ-
ing a nucleus roughness penalty and local exhaustion of
long chains. Fig.1 summarises our main results, to be dis-
cussed in more detail below: (i) a simple average across
the polymer chain population (total-stress model), which
does not properly account for the effects of polydisper-
sity, is insufficient to predict the strong acceleration of
nucleation rate with γ̇; (ii) polydispersity leads to enrich-
ment of long chains in the critical nucleus, giving a super-
exponential dependence of the nucleation rate on shear
(GO-polySTRAND); and (iii) this enrichment is limited:
local exhaustion of long chains (smooth-polySTRAND)
limits this super-exponential behaviour.

Model overview: In the GO model nuclei are ellipsoids
of NS stems and NT monomers (Fig 2a). The quies-
cent nucleus potential is Unuc = −εBNT +µSS(NT , NS),
where εB is the free energy of crystallization per
monomer, µS is the surface energy cost, and S is the sur-
face area. All energies are in units of kBT . The model
assumes that the flow-induced reduction in chain entropy
can be subtracted from the entropy penalty for crystal-
lization. Each chain species deforms differently so has its
own attachment rate. The stem attachment k+

st and de-
tachment k−st rates obey k+

st/k
−
st = φi exp(−∆Unuc+∆fi),

where φi is the melt volume fraction of species i and ∆fi
is the change in monomer free energy from chain defor-
mation. Existing stems can attach or detach a monomer
of the same species whose volume fraction at the nucleus
surface taken as 1. Thus the ratio of rates for existing
stems is identical to k+

st/k
−
st but with φi = 1.
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FIG. 2. (a) A nucleus in the GO model [25]. Blocks are
crystallised segments, smooth lines are amorphous. Colours
are chains with different deformation. Each chain forms a
separate stem. (b) Nucleation rate over quiescent rate against
Kuhn step nematic order for MD [15] and the ourec models.
The quiescent critical nucleus, n∗, in MD is 12 Kuhn steps.

GO-polySTRAND: We derive an analytical expression
for the nucleus free energy consistent with the GO model.
The nucleus has stems of species i with fraction wi (num-
ber of i stems is NSwi) and monomers with fraction vi
(number of i monomers is NT vi). The nucleus entropy
contains (i) the number of arrangements of NSwi stems

of each species among NS stems, and (ii) the number of
ways to distribute NT vi monomers among NSwi stems.
For q = NS/NT and large NS and NT the nucleus free
energy is (see Supplementary Information (SI) [29] §1):

F = NT
∑
i

[
qwi(2 logwi − log φi)− vi log vi

+ (vi − qwi) log(vi − qwi)− vi∆fi
]

+NS log q − εBNT + µSS(NT , NS),

(1)

Minimisation over {wi, vi} with
∑
i wi =

∑
i vi = 1 yields

wi =
Bφi exp(∆fi)

1−A exp(∆fi)
, vi =

Bqφi exp(∆fi)

[1−A exp(∆fi)]
2 , (2)

where A and B are Lagrange multipliers, determined by,∑
i

qφi exp(∆fi)

(1−A exp(∆fi))
2 =

∑
i
φi exp(∆fi)

1−A exp(∆fi)
; B = 1∑

i
φi exp(∆fi)

1−A exp(∆fi)

Here, the first equation is solved numerically for A (there
is always a suitable A such that the denominators are
positive) and the second gives B directly. The GO-
polySTRAND is computationally fast, only requiring nu-
merical solution of the equation for A. The model also
enables addition of further physics without costly micro-
scopic simulations.

Eq.1 is projected onto NT alone by minimising over
NS and approximating fluctuations in NS via ∂2F/∂N2

S

(see SI [29] §1.3). The same algorithm computes the
quiescent free energy, leading to the change in free energy
∆FpS = F q

pS − F flow
pS , cancelling some of the error from

finite NS . The exact calculation of the quiescent barrier
from ref [27] provides the final free energy barrier via
Ffinal = F q

GO − ∆FpS. Barriers from this method agree
very closely with GO simulations [27] (see SI [29] §1.4).
We calculate Ṅ by solving a 1D Kramer’s problem [30],
which accurately predicts Ṅ from GO simulations for a
given nucleation barrier [27] (see SI [29] §3).

Next, we require {∆fi}. In MD simulations [15] of
two-entanglement chains, Ṅ grows exponentially with
the Kuhn segment nematic order P2,K . Here, head-to-
tail symmetry means there is effectively one species. For
a single species at moderate ∆fi, polySTRAND predicts
Ṅ ∝ exp(∆fn∗), where n∗ is the quiescent critical nu-
cleus size. Hence taking ∆f = ΓP2,K , with Γ a constant,
gives the exponential behaviour seen in MD and Γ = 0.65
gives quantitative agreement (Fig 2b). A polydisperse
melt requires P2,K for each chain length. Hence we use
the Rolie-Double-Poly (RDP) constitutive equation [28]
to compute chain configuration tensors A under flow for
each species. The MWD is discretized into N species,
with species i having fraction φi and Zi entanglements.
The RDP computes Aij , the effect of species j on species
i, via N2 coupled differential equations. The overall con-
figuration for species i is Ai =

∑
j φjAij . The order pa-

rameter for species i is P2,K,i = Λmax/Ne, where Λmax is
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the largest eigenvalue of Ai−I and Ne is the Kuhn steps
per entanglement. The RDP enables us to resolve P2,K

for each chain length and then use the polySTRAND
model to compute their co-operative effect on nucleation.
We also compare this to a simplified ‘total-stress’ model
where the total melt stress (AT =

∑
i φiAi) is used to

compute a pre-averaged single species P2,K,av.

Fig 1 shows steady-shear Ṅ measurements from a poly-
disperse isotactic polypropylene (iPP) [9]. The total-
stress model predicts Ṅ is, at most, exponential in the
shear rate, γ̇, since P2,K,av grows sublinearly with γ̇ for a
shear thinning fluid. In contrast, the GO-polySTRAND
captures the upward curvature in the data at all temper-
atures. This arises directly from enrichment of highly-
deformed chains in the nucleus (Eq 2 indicates strong
enrichment in the fraction wi of stems with large ∆fi,
i.e. oriented chains, predisposed to nucleation, and fur-
ther enrichment in vi); this long-chain enrichment, as well
as a flow model capable of predicting individual chain
species dynamics, is indispensable to model Ṅ .

Long-chain enrichment apparently contradicts scatter-
ing data by Kimata et al. [3], showing no overrepre-
sentation of long chains in shish structures. However,
our model predicts enrichment only in pre-critical nuclei.
Post-nucleation growth is thermodynamically favourable
so recruits all chains equally, giving the melt distribution
in well-developed crystals. Thus enrichment strongly in-
fluences Ṅ , but will not be observed in larger crystals. In-
deed Kimata et al. observed that the long chains catalyse
the recruitment of other chains into shish. To quantita-
tively understand shish formation, we require a detailed
understanding of polydispersity in point-like nucleation,
as provided by the polySTRAND model.

The model parameters required for experimental com-
parison fall into four classes: (i) material (Kuhn step
density ρK and crystal growth rate Gc) and (ii) rheo-
logical parameters (entanglement molecular weight Me,
Rouse time of an entanglement segment τe and Ne):
these are obtained from the literature or linear rheolog-
ical measurements; (iii) quiescent nucleation parameters
(monomer attachment time τ0, and the quiescent nucle-
ation barrier, specified by n∗ and the quiescent barrier
height ∆F ∗

q , or equivalently µS and εB) which are ob-
tained from the quiescent crystallisation measurements;
and (iv) a single, order 1, FIC parameter (Γ), which
is fitted to low-shear FIC experiments (see SI [29] §4).
All parameters are independent of MWD, except for τe
which depends weakly on MWD. Only certain parame-
ters (τe, n

∗ and ∆F ∗
q ) depend on temperature. To model

the data in Fig.1 at 140◦C, we took the material and
rheological parameters from ref [25]: Me = 4.4kg mol−1,
τe = 90ns, Ne = 25, ρK = 2.7 × 109µm−3, τ0 = 0.76ns
and n∗ = 1000 monomers (Gc is not required to model
the nucleation rate). We modeled the MWD as a gen-
eralized exponential distribution, as implemented in the
RepTate software [31] with parameters selected to give

the reported Mw and Mn. We adjusted the quiescent
barrier height ∆F ∗

q and Γ to capture the lowest two shear
rates at 140◦C, obtaining 65.0kBT and 4.3, respectively.
Finally, we slightly enhanced the high-molecular weight
tail to capture the curvature of the 140◦C experiments,
adding a mode of mass 1.9×105 kg mol−1 at φ = 0.03%.
To model the other temperatures we adjusted only εB to
capture the lowest γ̇, obtaining ∆F ∗

q of 63.8 and 66.7kBT
at 130, and 144◦C, respectively.
Smooth-polySTRAND: The GO-polySTRAND over-

predicts the curvature at high γ̇ (Fig.1) suggesting a
bound to the enrichment of deformed chains. This may
be because nucleus growth allows insufficient time to
draw stems from an infinite supply in the surround-
ing melt. Instead stems are drawn from a small region
around the nucleus. Also, the GO-polySTRAND model
allows the nucleus to be composed of stems of widely dif-
ferent lengths: this is unfavourable, as only stems of sim-
ilar length benefit fully from crystallization. We account
for these as follows. (1) A growing nucleus draws NS
stems at fraction wi, from a limited number QS of stems
with initial fraction {φi}, leaving QS − NS remaining
stems at fraction θi, such that (QS − NS)θi + NSwi =
QSφi. We replace the term −NS

∑
i wi log φi in Eq. 1

with
∑
i[(QS − NS)θi log θi − QSφi log φi], the change

in stem translation entropy between the initial melt
(Qs stems at fraction φi) and the final depleted melt
(Qs − Ns stems at fraction θi). (2) We penalise devia-
tions of the stem length l (in monomers) from the average
L = NT /NS , via an energy 1

2κ(l− L)2. We now proceed
as with the GO-polySTRAND model by deriving the nu-
cleus free energy. A partition sum over stem lengths at
fixed NT gives this to be (see SI [29] §2):

F =
∑
i

[(QS −NS)θi log θi −QSφi log φi +NSwi logwi]

−NTE(∆f)− (NS/2κ)Var(∆f) + 1
2 logNS

− 1
2 (NS − 1) log(2π/κ)− εBNT + µSS(NT , NS)

where E(∆f) and Var(∆f) are the mean and variance of
∆fi over distribution wi. Minimisation over {wi} gives
the chemical equilibrium of stems between the nucleus
and the locally surrounding melt:

wi =
QSφi

NS +B(QS −NS) exp((P/κ− L)∆fi −∆f2
i /2κ)

,

where B and P are determined from
∑
i wi = 1 and∑

i wi∆fi = P . We use QS = QS0NS , so the number of
available stems grows with NS , and κ = κ0 + 1/L2, so κ
is sufficiently large for all relevant nucleus shapes. This
adds two FIC parameters, QS0 and κ0, which are fitted
to experiments in Fig 1. The final barrier is computed
directly, as we have no exact solution to the quiescent
problem as in GO-polySTRAND, and the nucleation rate
is calculated as before (see SI [29] §3). Fig. 1 shows
improved agreement at high γ̇ due to local exhaustion of
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long chains; here we fitted QS0 = 30 and κ0 = 0.1. To
capture the data, we also needed to slightly increase the
mass of the extra high-molecular weight mode to 3.0×105

kg mol−1.

We verify the model for varying MWD using the ex-
periments of Acierno et al. [32], who studied a range of
isotactic poly-1-butene (iPB) melts (see Fig 3). These
FIC experiments applied a constant γ̇ for time ts, so
that γ̇ts = 60, and recorded the half-time of the result-
ing turbidity evolution, t1/2, all at 103◦C. In all cases
ts � t1/2. Such measurements are invariably affected by
heterogeneous nucleation due to embedded particles that
provide a favourable surface for nucleation [18, 19]. To
model these data we assume: the heterogeneous nucle-
ation density, N0, at 103◦C, varies by sample; quiescent
homogeneous nucleation and post-shear nucleation are
negligible; shear creates Ṅγ̇ts extra nuclei, where Ṅγ̇ is
the steady-state FIN rate from the smooth-polySTRAND
model; the FIN barrier at zero shear (characterized by
∆F ∗

q and n∗) and all other crystallisation parameters do
not vary between samples; and t1/2 occurs when the crys-
tal fraction reaches φc = 10%, although our conclusions
are insensitive to the exact value. Thus we computed
t1/2 by combining Ṅγ̇ts and N0 in the Schneider rate
equations [33]. We obtained model parameters as fol-
lows. Rheological parameters were fitted to linear rheo-
logical measurements (see SI [29] §4.3). The growth rate
for iPB at 103◦C [34] is G = 0.063µm/sec. We com-
puted ρK = 5.3 × 108µm−3 from the melt density and
τ0 = 0.31µs by projecting τe to the Kuhn step length-
scale. The quiescent t1/2 determines N0, giving values of
1.3, 8.3, 12 and 37×10−12µm−3, respectively, for iPB116,
177, 295 and 398. We took QS0 = 30 and κ0 = 0.1 from
our iPP modelling above. We fitted the remaining pa-
rameters, Γ and ∆F ∗

q and n∗, to the FIC data for iPB166
only, giving 1.3, 68kBT and 540, respectively. In sum-
mary, all samples required fitting to linear rheology and
quiescent crystallisation data, while a single FIC param-
eter Γ was fitted to FIC data for the lowest molecular
weight only. Fig 3 shows the model predicts t1/2, for
all samples, whenever there are isotropic crystals, up to
the emergence of rod-like crystals, successfully predict-
ing the effect of varying MWD. Where there are entirely
rod-like crystals the model generally predicts a lower t1/2
than experiments. This could be due to overprediction
of Ṅ at high γ̇, as in Fig 1. Also absent from our model
is the slower crystallisation kinetics of rod-like crystals,
compared to spherulites, due to their lower growth di-
mension. The model overpredicts t1/2 for the highest
Mw at the lowest γ̇. Here, the nucleation density is very
high and ts is long, suggesting that crystallisation during
the flow may be non-negligible.

Conclusions: Using systematic multiscale modelling
we derived a highly tractable model of FIN with deep-
rooted molecular origins. We used MD [15] as a high-
resolution pseudo-experiment to extract the key physics
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FIG. 3. Experiments [32] and the smooth-polySTRAND for
t1/2 after a shear of γ = 60 for iPB. The legend shows Mw

and Mw/Mn (PDI). The open, closed and shaded symbols
indicate spherical, rod and mixed morphologies, respectively.

of FIN; we extended the spatiotemporal range with
highly coarse-grained kinetic Monte Carlo simulations
[25, 26]; and, via a low-dimensional projection and ther-
modynamic modelling, we produced a rapidly solvable
model for FIN. Our coordination of these techniques pro-
vides a road-map for problems with very widely sepa-
rated spatiotemporal scales, common throughout molec-
ular physics. Our thermodynamic modelling provides a
flexible, analytic and broadly-applicable framework to
capture general anisotropic nucleation under external
fields. We illustrated this flexibility by adding local ex-
haustion of long chains and a penalty for nucleus rough-
ness. Future extensions of this approach may produce a
fully non-equilibrium treatment of diffusion and concen-
tration gradients around the nucleus. Using a recent non-
linear flow model, we account properly for the dynamics
of each chain species, not just the total stress. Our FIN
model makes successful quantitative predictions for vari-
ations with flow rate, temperature and molecular weight
distribution, which are key processing control parame-
ters. Our model predicts the enrichment of long chains
during nucleation. A signature of this enrichment, seen
in experiments, is super-exponential growth of Ṅ with γ̇.
This super-exponential effect vanishes in single species
models. Our FIN model is nearly analytic, so is suitable
for computational modelling of polymer processing. The
models in this letter are available in the Reptate software
[31]
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