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Abstract

The branches of motion in the configuration space of a reconfigurable linkage
can intersect in different ways leading to different types of singularities. In the
vast majority of reported linkages whose configuration spaces contain multiple
branches of motion the intersection happens transversally, allowing local meth-
ods, like the computation of its tangent cone, to identify different branches by
means of their tangents. However, if these branches are of the same dimension
and they intersect tangentially, it is not possible to identify them by means of
the tangent cone at the singularity as the tangent spaces to the branches are
the same. Although this possibility has been mentioned by a few researchers,
whether linkages with this kind of tangent intersection of branches of motion
exist is still an open question. In this paper, it is shown that the answer to
this question is yes: A local method is proposed for the effective identifica-
tion of branches of motion intersecting tangentially, and a method for the type
synthesis of linkages that exhibit this particular type of singularity is presented.

Keywords: Kinematics, Configuration space, Tangential intersections,
Singularity, Reconfigurable mechanisms

1. Introduction

The study of singularities is nothing short of crucial in the analysis, design
and control of mechanisms and robots. This is a topic that has been thoroughly
investigated since researchers noted that the properties of linkages dramatically
change in certain configurations. Of particular importance are the singularities5

occurring in the configuration space of the mechanism [1, 2], where its smooth-
ness is lost. Hunt [3] called these singularities uncertainty configurations and
used a planar 4-bar mechanism in a flattened configuration as an example (see
also [4]), pointing out that from such configuration it is possible to unfold the
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mechanism “in two essentially different ways”. These two different ways are two10

branches of motion, in a broad term, in the configuration space of the mecha-
nism. An example of a 4-bar mechanism with opposite links of the same length
is shown in figure 1. It can be seen that from a flattened configuration q0 the
mechanism can be unfolded in two different ways: a parallelogram (q2) and an
anti-parallelogram (q1).15

Figure 1: A 4-bar mechanism and a singularity in its configuration space.

A branch of motion, sometimes also referred to as motion mode [1, 5, 6]
or motion phase [7–9]1, is actually a subvariety of the real variety built by
the set of feasible configurations that constitute the configuration space of the
mechanism, see [5, 6, 10, 11] for examples of analysis of mechanisms using
algebraic geometry. Zlatanov et al [1] identified these subvarieties as regions of20

the configuration space and called Hunt’s uncertainty configurations constraint
singularities.

Most mechanisms have a configuration space that possesses non-smooth
points and many include several branches of motion. Over the past twenty
years, several types of mechanisms with various branches of motion have been25

investigated. With their various features, typical types of mechanisms have been
investigated: metamorphic mechanisms [9, 12–16], kinematoropic mechanisms
[17–21] and discontinuously movable mechanisms [22, 23]. These are called in
general reconfigurable mechanisms [24–29].

The configuration space of a mechanism is a variety and it can be modeled30

in particular as an analytic variety. Whitney studied the tangents to analytic
varieties [30] and defined the concept of tangent cone, which, unlike the tangent
space, should also describe the local aspects of the variety at its singularities.

1This term has also been applied to cases where physical limit or variable joints were used.
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The approach was firstly adapted to mechanisms theory by Lerbet [31], followed
by Müller [32–34]. The concept of tangent cone was not only used in the study,35

but also in the design of mechanisms [35].
Although singularities in the configuration space have been investigated rig-

orously through decades, most of this research has focused on transversal in-
tersection of motion branches of the same and of different dimensions. In a
transversal intersection, the two manifolds intersecting have non-parallel tan-40

gents at the intersection point. The intersection in the configuration space of
the 4-bar mechanism shown in 1 happens transversally. In figure 1, the entries
of the tangent vectors q̇ ∈ R4 are given by the angular velocities of the four
revolute joints. At the intersection, q0, the vectors that are tangent to the
branch of motion related to parallelogram configurations are non-parallel to the45

tangent vectors to the branch of motion with anti-parallel configurations. This
is depicted in figure 1, where a and b are the two different link lengths and
q̇1 ∈ R is the angular velocity of the input joint.

In the case of transversal intersections, the concept of tangent cone works
perfectly and the authors consider it a very effective tool for analyzing these50

singularities, as it reveals the number of motion branches intersecting as well as
their dimension, i.e., the number of finite degrees of freedom of the mechanism
in each branch. However, there are several other situations of intersections of
branches of motion that have remained rather obscure mainly due to the lack of
examples of mechanisms exhibiting these types of singularities. Table 1 shows55

seven different cases of intersections of motion branches, it has to be warned
that this table is not meant to be exhaustive.

It can be seen that cases 1 and 2 of Table 1 are common singularities with
many examples being reported. In these types of singularities, the tangents
to the subvarieties span different vector spaces and they can be recognized by60

means of the computation of the tangent cone. Cases 5, 6 and 7 involve a
cusp. Only until recently, only one example of a mechanism with a cusp in the
configuration space was known: Connelly and Servatius’ double-Watt linkage
[52]. None of the various possible definitions of tangent cone by Withney works
at such singularities, and it was shown in [54] that the tangent cone analysis65

does not work at such singularity since the tangents are not defined at the cusp.
Therefore the notion of tangent cone, which was already applied by Lerbet [31],
was made precise by calling it the kinematic tangent cone, denoted with CK

q V ,
defined as the tangents to smooth curves through a point q ∈ V [55].

In this regard, López-Custodio et al [53] presented a method for designing70

this kind of mechanisms. This method also led to the investigation of two
unexplored, more complex cases of intersection of branches: cases 6 and 7 in
Table 1. As expected, in these two cases the tangent cone only recognizes the
smooth curves passing through the singularity, failing to detect the presence
of the cusp. Devising an effective local analysis method that can work at this75

singularities is still an open problem.
Recently [51], it was found that one of the earliest examples of kinema-

totropic linkages, the Wunderlich mechanism [17, 50] exhibits a different type
of intersection between one of its 1-DOF branches and its 2-DOF branch, these

3



Table 1: Different types of intersections between motion branches. (*Examples of mechanisms
exhibiting singularities of the cases 1 and 2 are very common. The references cited here are
just a sample of publications focusing exclusively in this kind of mechanisms.)

Singularity
Examples

reported

Tangent

cone can

identify

branches

Singularity
Examples

reported

Tangent

cone can

identify

branches

X X X X

1. Same dimen-

sion, transversal

[1, 21, 24, 26–

29, 36–44]*

2. Different dimen-

sion, transversal

[11, 17–

20, 45–49]*

✗ ✗ X X

3. Same dimen-

sion, tangential

4. Different dimen-

sion, tangential
[50, 51]

X ✗ X ✗

5. Cusp [52, 53] 6. Cusp and curve [53]

X ✗

7. Cusp and sur-

face

[53]
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branches intersect tangentially, i.e. their tangents at the intersection are par-80

allel, as in case 4 in Table 1, with the tangent cone analysis still successfully
detecting branches and their dimension. However, this opened the question of
whether there exist mechanisms with tangential intersections of motion branches
of the same dimension, in which case the tangent cone would fail in detecting the
bifurcation. Piiponen et al [56] discussed this topic from the algebraic geometry85

point of view but so far no mechanism with such property has been reported
and, no technique for the analysis of this singularity has been proposed. In this
paper, we show that the answer to this question is yes. Examples of mechanisms
with this type of singularity are presented for the first time and an extension
to the tangent cone analysis method is proposed which effectively detects these90

motion branches.
It is important to mention that the case of tangential intersection of motion

branches is of particular interest since the mechanism can move from one motion
branch to another through a CnC curve, i.e. a curve whose first nC derivatives
exist, while in a typical reconfiguration through a transversal intersection of95

motion branches the mechanism has to move through a non-differentiable C0

curve, in which not even the first derivative exists, forcing the mechanism to
stop at the singularity. This will make reconfiguration technically easier, al-
though it is not exactly a smooth motion, which would imply a curve in C∞,
therefore the terms smooth reconfiguration and smooth kinematotropy (or regu-100

lar reconfiguration and kinematotropy) used in [51, 56] are not adopted in this
paper.

This paper is organized as follows: Firstly, the basic notions on the use of
tangent cone analysis are presented in Section 2. In Section 3 the configura-
tion space of the Wunderlich mechanism is used to explain the phenomenon of105

tangential intersection of motion branches. In Section 4 a method for detecting
and analyzing tangential intersections in the configuration space is presented.
Section 5 explains how to design mechanisms with this type of singularity and
two examples are presented and analyzed in Section 6. Finally, conclusions are
drawn in Section 7.110

2. A brief introduction to the kinematic tangent cone analysis

In this section, the concept of kinematic tangent cone to the configuration
space of a mechanism is briefly revisited. Refer to [55] for a more in-depth read
about the topic and to [57] for the computational aspects.

Let V ⊂ Vn be the configuration space of an n-joint mechanism defined as:115

V := {q ∈ Vn | fi(q) = 0, i = 1, . . . , γ}

where fi is the constraint equation of loop i of the mechanism comprising γ
loops. Since fi are analytic functions, V is a real analytic variety which may
comprise several subvarieties that may be of different dimension. The dimension
of V is, therefore, a local property which, at point q, is equal to dim(TqV )
if q is a regular point of V . At points where different subvarieties intersect,120
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the tangent space is insufficient to determine, not only the dimension of these
subvarieties, but also the topology of V in the neighborhood of q. It is known
that the kinematic tangent cone is a suitable tool for locally analyzing these
singularities, since, unlike TqV , the tangent cone, CK

q V , consists of the union
of all the tangents to smooth curves passing through q, rather than the linear125

span of them.
CK

q V can be computed by means of higher-order approximations using the
higher-order kinematic equations:

Ki
q :=

{

x1 ∈ Rn
∣

∣

∣
H(1)(q,x1) = 0, H(2)(q,x1,x2) = 0, . . . ,

H(i)(q,x1,x2, . . . ,xi) = 0
}

(1)

where, for the sake of simplicity, x1 := q̇, x2 := q̈, . . . ,xi := diq/dti. H(i)

represents the i-th order kinematic equation. Explicit expressions for these130

kinematic higher-order analyses can be found in [31, 33, 57–59]. The kinematic
tangent cone is obtained as:

CK
q V = lim

m→∞

m
⋂

i=1

Ki
q = Kκ1

q (2)

where κ1 is the order at which dim(Ki
q) = dim(Kκ1

q ), ∀i > κ1. Typically, it is as-

sumed that if q is the intersection of smotion branches, then: Kκ1
q = ∪s

j=1K
κ1(j)
q

with K
κ1(j)
q 6= K

κ1(i)
q if i 6= j. However, in the following sections it will be135

pointed out that this is true only if the s subvarieties intersect transversally. If
there are r different sets of subvarieties intersecting tangentially at q, then Kκ1

q

is the union of s− r vector spaces.
It is important to mention that the approach only works if the tangents to V

at q exist. In the case that such tangents are not defined, for example at cusp140

singularities, CK
q V will fail to give a local picture of the configuration space.

Examples of mechanisms whose configuration space exhibit a cusp singularity
were reported in [52, 53].

3. Transversal and tangential intersections in the configuration space

Figure 2a shows a planar linkage known as the Wunderlich mechanism [50].145

This planar 5-loop linkage is one of the earliest examples of kinematotropic
linkages, Wohlhart [17] studied it when he introduced the term kinematotropic.
Wohlhart proved that the Wunderlich mechanism can change from 1 to 2 DOFs
from the singular configuration q0 ∈ V shown in figure 2a.

A striking property of this singularity was pointed out in [51] where Müller150

and Piipponen made a local description of the configuration space of the mech-
anism around q0. They found out that there are two 1-dimensional branches of
motion and one 2-dimensional branch of motion intersecting at the singularity

6



Figure 2: a) The Wunderlich linkage and b) a schematic representation of its configuration
space around q0.

as schematically depicted in figure 2b. The kinematic tangent cone to V at q0 is
the union of the three tangent spaces to the three subvarieties intersecting at q0155

and can be computed after a second-order approximation: CK
q0
V = ∪3

i=1K
2(i)
q0 ,

where dim(K
2(1)
q0 ) = 2 and dim(K

2(2)
q0 ) = dim(K

2(3)
q0 ) = 1. However, surprisingly

K
2(2)
q0 < K

2(1)
q0 , which indicates that V2 is a 1-dimensional curve that tangentially

intersects the 2-dimensional surface V1 as Tq0
V2 < Tq0

V1. As far as K
2(3)
q0 is con-

cerned, this vector space is not a subspace of K
2(1)
q0 and the intersection between160

V1 and V3 is transversal, like in any other reported reconfigurable mechanism.
Nevertheless, the intersection between V1 and V2 proves that the Wunderlich
mechanism is not only one of the earliest examples of kinematotropic linkages,
but it is also the first example of a mechanism whose configuration space exhibits
a tangential intersection between different subvarieties.165

The tangent cone to V at the analyzed singularity of the Wunderlich linkage
effectively describes the local properties of the configuration space despite the
peculiar property of V1 and V2 intersecting tangentially. The tangent cone
reveals the tangents to the curves that lie in the subvarieties intersecting at the
analyzed point. Since V1 and V2 are of different dimension, their tangent spaces170

at q0 appear as different components of the tangent cone, namely, a line and a
plane, the line being contained in the plane.

However, the situation is not as simple when dealing with the intersection
of subvarieties of the same dimension. Without loss of generality, consider the
intersection of two 1-dimensional branches of motion. Figure 3a shows the175

typical case in which the branches intersect transversally at q0. If a κ1th-
order approximation is required to compute the tangent cone to V at q0, then

CK
q0
V = K

κ1(1)
q0 ∪ K

κ1(2)
q0 , where K

κ1(1)
q0 and K

κ1(2)
q0 are two non-parallel lines,

7



and CK
q0
V describes perfectly the local structure of V around q0. In the case

of intersections of higher-dimensional subvarieties, CK
q0
V is the union of two180

different vector spaces of the same dimension.

Figure 3: Intersection of 1-dimensional subvarieties: a) transversal case and b) tangential
case.

However, if curves V1 and V2 intersect tangentially as shown in figure 3b, then

Tq0
V1 = Tq0

V2 and, hence, K
κ1(1)
q0 = K

κ1(2)
q0 , which means that the tangent cone,

rather than being the union of two vector spaces is a sole vector space: CK
q0
V =

Kκ1
q0
, with Kκ1

q0
:= K

κ1(i)
q0 , i = 1, 2. This means that CK

q0
V is not giving us185

enough information as it fails to indicate that there are two branches intersection
at the analysis point, it rather suggests that there is only one tangent space to
V at such point, which could lead to the incorrect conclusion that there is no
branching at q0. It is also important to mention that although this is a c-space
singularity and, as such, the rank of the Jacobian matrix will drop at such190

configuration, this rank decrement is a necessary but not sufficient condition
for having a bifurcation in V and, therefore, having a rank decrement and a
tangent cone that is only one vector space is not sufficient to prove a tangent
bifurcation. In [60] an example of a Goldberg 6R linkage in a configuration with
a rank decrement but no bifurcation in the c-space was found.195

In order to find out whether q0 is a tangent intersection further analysis
is required. As shown in figure 3b, all vectors ax1(q0), a ∈ R, which are
joint velocity vectors at q0, are parallel and lie in CK

q0
V , which is spanned

by such vectors as {ax1 : a ∈ R}. However, it is possible that the joint
acceleration vectors x2(q0,x1), are no longer parallel. If these vectors are still200

parallel they are again not useful in detecting the two branches intersecting at
q0. There must exist some number nC ∈ Z called order of contact, for which
the (nC + 1)th order derivatives x(nC+1)(q0,x1, . . . ,x(nC)) span two different
vector spaces allowing the identification of both branches. It is then said that
all tangential intersections exhibit at least a 1st-order contact. It can be seen205

8



that, with this approach, the higher-order analysis is the only required tool to
prove a tangent intersection. In the following section, a formal methodology
that allows identifying any kind of intersection is presented.

4. Identification of tangential intersections of branches of motion of

the same dimension210

A tangential intersection at a configuration q ∈ V is characterized by the
fact that there are smooth curves through q having the same tangents. If the
intersecting branches are of the same dimension, the first-order aspect, and
hence the kinematic tangent cone (any other definition of tangent cone [55]) is
insufficient to identify such intersection. However, the solution set of higher-215

order constraints can be used to this end.
The solution set of the ith-order constraints is

K
i

q := {(x1,x2, . . . ,xi) ∈ Ri×n : H(1)(q,x1) = 0,

H(2)(q,x1,x2) = 0,
H(3)(q,x1,x2,x3) = 0,

· · ·
H(i)(q,x1,x2,x3, . . . ,xi) = 0}.

(3)

Denote with πk : Ri×n → Rn the projection to the kth factor of K
i

q according
to

πk(K
i

q) := {xk ∈ Rn| (x1, . . . ,xk, . . . ,xi) ∈ K
i

q}. (4)

The ith-order cone (1) is then given by220

Ki
q = π1(K

i

q) (5)

At a singularity, K
i

q splits into the union of si solution sets

K
i

q = K
i(1)

q ∪ . . . ∪K
i(si)

q . (6)

where i > nC and nC is the order of contact between the motion branches
intersecting tangentially at q.

Different motion branches meeting at q ∈ V can be separated by investi-
gating higher-order motions, which is not taken into consideration in (1). At225

a tangential intersection there are different higher-order motions, according to
the motion branch, which have the same tangents.

Lemma 1. A point q ∈ V is a tangential intersection if and only if π1(K
i(j)

q ) ≤
π1(K

i(l)

q ) and πi(K
i(j)

q ) 6= πi(K
i(l)

q ), j 6= l for some i > nC . If the branches

of motion are of the same dimension the equal symbol is fulfilled in the first230

condition.
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The necessary order i may be different from κ1 in Eq. (2). Notice that q

may additionally be a singularity due to non-smoothness of V (e.g. cusp), i.e.
when q is a boundary point of a motion branch.

Similarly to dim
(

Ki
q0

)

, dim
(

πi

(

K
k

q

))

, k > i, decreases as k increases,235

until at order κi one has dim
(

πi

(

K
κi

q

))

= idim
(

Kκ1
q

)

, which will no longer

decrease and it can be concluded that the set of xi vectors has been computed.

5. Design of 1-DOF linkages with a tangential intersection in the

configuration space

A mechanism with two motion branches intersecting tangentially can be240

designed taking a linkage that is known to have at least two motion branches
and then forcing the two branches to have the same joint velocities at their
intersection configuration. Following this idea, a procedure for the design of
these mechanisms is presented for the 1-DOF case.

Consider a 1-DOF mechanism that is known to have two branches of motion,245

α and β, which are intersecting at a singular configuration q0 ∈ Vα ∩ Vβ . One
way to make sure the joint velocities, x1, are the same in both branches at q0

is to have one joint that is idle in branch α, which implies that its velocity is 0
not only at q0 but at any point in Vα, while in branch β the same joint is in
a stationary configuration [3] at q0, i.e., its velocity is 0 in that configuration250

but it is different from 0 in the neighborhood of q0, it is also usual to say that
the joint is in a dead-point or transitorily inactive [3]. A simple way to design a
mechanism with such a property in one of its joins is now explained. We start
by taking an overconstrained 6R linkage in which the axes of four of its joins,
SΠ1, . . . ,SΠ4, lie on a plane Π in the configuration q0. The other two joint axes,255

SΛ1 and SΛ2, are perpendicular to Π at q0. This arrangement is shown in figure
4. It is also required that in this configuration the 6R mechanism is not in a
singular configuration.

Define SΠ := span(SΠ1(q0), . . . ,SΠ4(q0)) and S6R := span(SΠ,SΛ1(q0),
SΛ2(q0)), clearly {SΛ1(q0),SΛ2(q0)} * SΠ, and since the 6R mechanism is not260

in a singular configuration and SΠ is a 3-system, dim(S6R) = 5. This implies

that, in the equation
∑4

i=1 q̇ΠiSΠi +
∑2

i=1 q̇ΛiSΛi = 0, the solution includes
q̇Λ1(q0) = q̇Λ2(q0) = 0, therefore, these joins are transitorily inactive. This
conclusion can be taken as a corollary to Theorem 2 of Section 2.2 in [3].

In order to design a reconfigurable mechanism based on this 6R overcon-265

strained mechanism, let us insert a seventh R joint with axis S7R. This 7R
mechanism has a branch of motion α in which the joint with axis S7R is idle
if S7R is different to all the axes in the 6R mechanism, which means the 7R
mechanism is still 1-DOF and follows the same motion as it was the 6R linkage.
Another branch of motion, β, appears as a non-overconstrained motion with270

all seven R joints being active, since this is a non-overconstrained motion the
branch is also 1-DOF.

In order to have q̇7R(q0) = 0 in branch β so that both branches intersect
tangentially, it is necessary to have S7R(q0) parallel to SΛ1(q0) and SΛ2(q0).
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Figure 4: Joint axes of a 1-DOF mechanism with tangential intersections in the configuration
space.

It is also required that the 7R mechanism is in a singular configuration as275

subvarieties Vα and Vβ are intersecting at q0. Therefore we need S7R(q0) ∈
S6R, this is fulfilled by placing S7R(q0) in Λ, the plane containing SΛ1(q0) and
SΛ2(q0) (see figure 4).

For this 7R mechanism in configuration q0, it can be seen that dim(span(S6R,
S7R(q0))) = 5, therefore q0 is singular as we know both branches of mo-280

tion are 1-dimensional. In addition, due to the geometry of the joint axes
belonging to perpendicular planes, q̇7R(q0), q̇Λ1(q0) and q̇Λ2(q0) cannot be
written in terms of any velocity of the joints whose axes lie on Π, therefore,
q̇7R(q0) = q̇Λ1(q0) = q̇Λ2(q0) = 0.

It is important to mention that the above procedure makes sure the 7R285

linkage is in a singular configuration and the angular velocities of the joints
with axes lying on plane Λ are 0. However, there is still a possibility of ob-
taining a rather strange situation in which the mechanism cannot work as a
non-overconstrained 7R mechanism without inactive joints. In this situation,
there is only one branch of motion passing through q0 in which the inserted290

seventh joint is always inactive, however the dimension of the screw system
spanned by all 7 joints is 5 only at q0. This kind of singularity in which there is
no bifurcation is rather strange, see example 7.4 of [60] for a case of this type.
Nevertheless, this situation can be identified when using the analysis method
described in Section 4, not only does the method reveal the branching at the295

solution set of the order higher than the order of contact, it also shows that the
time derivative of this order of the joint variable q7R is different to 0, indicating
that the joint is not inactive.

6. Examples

In this section two examples of reconfigurable mechanisms with two branches300

of motion intersecting tangentially are presented. Both examples are obtained
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using the method discussed in Section 5. The tangential intersection is identified
using the concepts discussed in Section 4. See [31, 33, 57–59] for more detailed
examples of the computation of the solutions to the higher-order kinematic
analyses.305

6.1. Case 1: A line-symmetric-based 7R mechanism

Figure 5a shows a 7R mechanism in which joints with axes SΠ1, SΠ2 SΛ1,
SΠ3, SΠ4 and SΛ2 constitute a Bricard line-symmetric 6R linkage [61, 62]. As
shown in figure 5b, in the configuration q0 ∈ V , axes SΠ1, . . . ,SΠ4 lie on plane
Π, while axes SΛ1 and SΛ2 lie on Λ and are perpendicular to Π. A seventh R310

joint is inserted between joints with axes SΠ1 and SΛ2. At q0, the axis of the
seventh joint, S7R, is parallel to SΛ1 and also lies on Λ.

The screw coordinates with respect to the coordinate system with origin at
O shown in figure 5a are the following:

SΠ1(q0) := (0, −1, 0; 0, 0, 0),

SΠ2(q0) := (−1, 0, 0; 0, 0, 0),

SΛ1(q0) := (0, 0, 1; 1, 0, 0),

SΠ3(q0) := (0, 1, 0; 0, 0, 2),

SΠ4(q0) := (1, 0, 0; 0, 0, −1),

SΛ2(q0) := (0, 0, 1; 0, −2, 0),

S7R(q0) :=

(

0, 0, 1;
1

2
, −1, 0

)

,

Define xi := (x1
i , . . . , x

7
i ) ∈ R7, where x1

i := diqΠ1/dt
i, x2

i := diqΠ2/dt
i,315

x3
i := diqΛ1/dt

i, x4
i := diqΠ3/dt

i, x5
i := diqΠ4/dt

i, x6
i := diqΛ2/dt

i and x7
i :=

diq7R/dt
i. The solution set for the first order constraints is:

K
1

q0
= K1

q0
=
{(

x1
1, 2x

1
1, x

3
1, x

1
1, 2x

1
1, x

3
1, −2x3

1

) ∣

∣ x1
1, x

3
1 ∈ R

}

.

The solution set for the second order constraints is:

K
2

q0
=
{

(x1,x2)
∣

∣ x1 =
(

x1
1, 2x

1
1, 0, x

1
1, 2x

1
1, 0, 0

)

,

x2 =
(

x1
2, 2x

1
2, x

3
2, x

1
2, 2x

1
2, x

3
2, 4(x

1
1)

2 − 2x3
2

)

,

x1
1, x

1
2, x

3
2 ∈ R

}

,

from which the second order approximation to the tangent cone is:

K2
q0

= π1

(

K
2

q0

)

=
{(

x1
1, 2x

1
1, 0, x

1
1, 2x

1
1, 0, 0

)

|x1
1 ∈ R

}

Since dim
(

K2
q0

)

= 1 it is concluded that κ1 = 2 and CKV = K2
q0

as we know320

this is a 1-DOF mechanism. It can be seen that the tangent cone is only one
vector space failing to reveal the bifurcation at q0.
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The solution set for the third order constraints is:

K
3

q0
=

{

(x1,x2,x3)

∣

∣

∣

∣

x1 ∈ π1

(

K
2

q0

)

, x2 ∈ π2

(

K
2

q0

)

,

x3 =
(

x1
3, 12(x

1
1)

3 − 12x1
1x

3
2 + 2x1

3, x
3
3, 12(x

1
1)

3 − 6x1
1x

3
2 + x1

3, 6(x
1
1)

3

−9x1
1x

3
2 + 2x1

3, x
3
3, 12x

1
1x

1
2 − 2x3

3

)

,

x1
1, x

1
2, x

3
2, x

1
3, x

3
3 ∈ R

}

,

Figure 5: A line-symmetric-based 7R mechanism with a tangential intersection in the config-
uration space.

The solution set for the forth order constraints is:

K
4

q0
= K

4(α)

q0
∪K

4(β)

q0

13



where,325

K
4(α)

q0
=

{

(x1,x2,x3,x4)

∣

∣

∣

∣

x1 ∈ π1

(

K
2

q0

)

,

x2 =
(

x1
2, 2x

1
2, 2(x

1
1)

2, x1
2, 2x

1
2, 2(x

1
1)

2, 0
)

x3 =
(

x1
3, −12(x1

1)
3 + 2x1

3, x
3
3, x

1
3, −12(x1

1)
3 + 2x1

3, x
3
3, 12x

1
1x

1
2 − 2x3

3

)

,

x4 =
(

x1
4, 24(x

1
1)

2x1
2 − 16x1

1x
3
3 + 2x1

4, x
3
4, 48(x

1
1)

2x1
2 − 8x1

1x
3
3 + x1

4,

−12x1
1x

3
3 + 2x1

4, x
3
4, −28(x1

1)
4 + 12(x1

2)
2 + 16x1

1x
1
3 − 2x3

4

)

,

x1
1, x

1
2, x

1
3, x

3
3, x

1
4, x

3
4 ∈ R

}

and

K
4(β)

q0
=

{

(x1,x2,x3,x4)

∣

∣

∣

∣

x1 ∈ π1

(

K
2

q0

)

,

x2 =

(

x1
2, 2x

1
2, −

6

5
(x1

1)
2, x1

2, 2x
1
2, −

6

5
(x1

1)
2,

32

5
(x1

1)
2

)

,

x3 =

(

x1
3,

132

5
(x1

1)
3 + 2x1

3, x
3
3,

96

5
(x1

1)
3 + x1

3,
84

5
(x1

1)
3 + 2x1

3, x
3
3,

12x1
1x

1
2 − 2x3

3

)

,

x4 =

(

x1
4,

504

5
(x1

1)
2x1

2 − 16x1
1x

3
3 + 2x1

4, x
3
4,

432

5
(x1

1)
2x1

2 − 8x1
1x

3
3 +

x1
4,

288

5
(x1

1)
2a12 − 12x1

1x
3
3 + 2x1

4,
1632

25
(x1

1)
4 + x3

4,
2948

25
(x1

1)
4 +

12(x1
2)

2 + 16x1
1x

1
3 − 2x3

4

)

,

x1
1, x

1
2, x

1
3, x

3
3, x

1
4, x

3
4 ∈ R

}

It can be seen that although π1

(

K
4(α)

q0

)

= π1

(

K
4(β)

q0

)

, π2

(

K
4(α)

q0

)

6=

π2

(

K
4(β)

q0

)

, therefore it is concluded that q0 is a tangential intersection of Vα

and Vβ . It is also concluded that nC = 1. Note that dim
(

π2

(

K
4(j)

q0

))

=

2 = 2dim
(

π1

(

K
4(j)

q0

))

, j = α, β, therefore κ2 = 4 and dim
(

π2

(

K
4(j)

q0

))

will330

no longer decrease and the vector x2 will remain unchanged through the so-
lution sets of any order. Observe that q̈7R(q0,x1) = x7

2 = 0 in branch α and
q̈7R(q0,x1) = x7

2 = (32/5)(x1
1)

2 6= 0 in branch β, which proves that the seventh
R joint is active in β. Figure 6 shows the 7R mechanism in two configurations
each belonging to each motion branch.335
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Figure 6: Branches of motion of the line-symmetric-based 7R mechanism.

6.2. Case 2: A Schatz-based 7R mechanism

Figure 7a shows a 7R mechanism in which joints with axes SΠ1, SΠ2 SΛ1,
SΠ3, SΛ2 and SΠ4 constitute a Schatz 6R linkage [63, 64]. As shown in figure
7b, in the configuration q0 ∈ V , axes SΠ1, . . . ,SΠ4 lie on plane Π, while axes
SΛ1 and SΛ2 lie on Λ and are perpendicular to Π. A seventh R joint is inserted340

between joints with axes SΠ3 and SΛ2. At q0, the axis of the seventh joint, S7R,
is parallel to SΛ1 and also lies on Λ.

The screw coordinates with respect to the coordinate system with origin at
O shown in figure 7a are the following:

SΠ1(q0) := (0, −1, 0; 0, 0, 0),

SΠ2(q0) := (−1, 0, 0; 0, 0, 0),

SΛ1(q0) := (0, 0, 1; 2, 0, 0),

SΠ3(q0) :=

(

1

2
,

√
3

2
, 0; 0, 0, 1

)

,

S7R(q0) :=

(

0, 0, 1;
1

2
, −3

√
3

2
, 0

)

,

SΛ2(q0) := (0, 0, 1; 0, −2
√
3, 0),

SΠ4(q0) :=
(

0, −1, 0; 0, 0, −2
√
3
)

,

Define xi := (x1
i , . . . , x

7
i ) ∈ R7, where x1

i := diqΠ1/dt
i, x2

i := diqΠ2/dt
i,345
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x3
i := diqΛ1/dt

i, x4
i := diqΠ3/dt

i, x5
i := diq7R/dt

i, x6
i := diqΛ2/dt

i and x7
i :=

diqΠ4/dt
i. The solution set for the first order constraints is:

Figure 7: A Schatz-based 7R mechanism with a tangential intersection in the configuration
space.

K
1

q0
= K1

q0
=

{(

x1
1,

√
3

2
x1
1, −

1

4
x5
1,

√
3x1

1, x
5
1, −

3

4
x5
1,

1

2
x1
1

)∣

∣

∣

∣

∣

x1
1, x

5
1 ∈ R

}

.

The solution set for the second order constraints is:

K
2

q0
=

{

(x1,x2)

∣

∣

∣

∣

x1 =

(

x1
1,

√
3

2
x1
1, 0,

√
3x1

1, 0, 0,
1

2
x1
1

)

,

x2 =

(

x1
2,

√
3

2
x1
2,

√
3

2
(x1

1)
2 − 1

4
x5
2,

√
3x1

2, x
5
2,

√
3

4
(x1

1)
2 − 3

4
x5
2,

1

2
x1
2

)

,

x1
1, x

1
2, x

5
2 ∈ R

}

,
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from which the second order approximation to the tangent cone is:

K2
q0

= π1

(

K
2

q0

)

=

{(

x1
1,

√
3

2
x1
1, 0,

√
3x1

1, 0, 0,
1

2
x1
1

)

∣

∣

∣

∣

x1
1 ∈ R

}

Since dim
(

K2
q0

)

= 1 it is concluded that κ = 2 and CKV = K2
q0

as we know350

this is a 1-DOF mechanism. It can be seen that the tangent cone is only one
vector space failing to reveal the bifurcation at q0.

The solution set for the third order constraints is:

K
3

q0
=

{

(x1,x2,x3)

∣

∣

∣

∣

x1 ∈ π1

(

K
2

q0

)

, x2 ∈ π2

(

K
2

q0

)

,

x3 =

(

x1
3,

√
3

8

(

4x1
3 − (x1

1)
3
)

+
9

8
x1
1x

5
2,

3
√
3

2
x1
1x

1
2 −

1

4
x5
3,

√
3

4

(

4x1
3

−(x1
1)

3
)

, x5
3,

3
√
3

4
x1
1x

1
2 −

3

4
x5
3, −

3
√
3

8
x1
1x

5
2 +

3

4
(x1

1)
3 +

1

2
x1
3

)

,

x1
1, x

1
2, x

5
2, x

1
3, x

5
3 ∈ R

}

,

The solution set for the forth order constraints is:

K
4

q0
= K

4(α)

q0
∪K

4(β)

q0

where,355

K
4(α)

q0
=

{

(x1,x2,x3,x4)

∣

∣

∣

∣

x1 ∈ π1

(

K
2

q0

)

,

x2 =

(

x1
2,

√
3

2
x1
2,

√
3

2
(x1

1)
2,

√
3x1

2, 0,

√
3

4
(x1

1)
2,

1

2
x1
2

)

x3 =

(

x1
3,

√
3

8

(

4x1
3 − (x1

1)
3
)

,
3
√
3

2
x1
1x

1
2 −

1

4
x5
3,

√
3

4

(

4x1
3 − (x1

1)
3
)

,

x5
3,

3
√
3

4
x1
1x

1
2 −

3

4
x5
3,

3

4
(x1

1)
3 +

1

2
x1
3

)

,

x4 =

(

x1
4,

√
3

4

(

2x1
4 − 3(x1

1)
2x1

2

)

+
3

2
x1
1x

5
3,

√
3

4

(

7(x1
1)

4 + 6(x1
2)

2 +

8x1
1x

1
3

)

− 1

4
x5
4, −

√
3

2

(

3(x1
1)

2x1
2 − 2x1

4

)

, x5
4,

√
3

8

(

7(x1
1)

4 + 6(x1
2)

2 +

8x1
1x

1
3

)

− 3

4
x5
4, −

√
3

2
x1
1x

5
3 +

9

2
(x1

1)
2x1

2 +
1

2
x1
4

)

,

x1
1, x

1
2, x

1
3, x

5
3, x

1
4, x

5
4 ∈ R

}
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and

K
4(β)

q0
=

{

(x1,x2,x3,x4)

∣

∣

∣

∣

x1 ∈ π1

(

K
2

q0

)

,

x2 =

(

x1
2,

√
3

2
x1
2, 0,

√
3x1

2, 2
√
3(x1

1)
2, −5

√
3

4
(x1

1)
2,

1

2
x1
2

)

,

x3 =

(

x1
3,

√
3

8

(

4x1
3 + 17(x1

1)
3
)

,
3
√
3

2
x1
1x

1
2 −

1

4
x5
3,

√
3

4

(

4x1
3 − (x1

1)
3
)

,

x5
3,

3
√
3

4
x1
1x

1
2 −

3

4
x5
3, −

3

2
(x1

1)
3 +

1

2
x1
3

)

,

x4 =

(

x1
4,

√
3

4

(

15(x1
1)

2x1
2 + 2x1

4

)

+
3

2
x1
1x

5
3,

√
3

4

(

16(x1
1)

4 + 6(x1
2)

2 +

8x1
1x

1
3

)

− 1

4
x5
4, −

√
3

2

(

3(x1
1)

2x1
2 − 2x1

4

)

, x5
4,

√
3

8

(

25(x1
1)

4 + 6(x1
2)

2 +

8x1
1x

1
3

)

− 3

4
x5
4, −

√
3

2
x1
1x

5
3 +

1

2
x1
4

)

,

x1
1, x

1
2, x

1
3, x

5
3, x

1
4, x

5
4 ∈ R

}

Figure 8: Branches of motion of the Schatz-based 7R mechanism.

It can be seen that π1

(

K
4(α)

q0

)

= π1

(

K
4(β)

q0

)

and π2

(

K
4(α)

q0

)

6= π2

(

K
4(β)

q0

)

,

therefore q0 is a tangential intersection of Vα and Vβ with nC = 1. Since
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dim
(

π2

(

K
4(j)

q0

))

= 2 = 2dim
(

π1

(

K
4(j)

q0

))

, j = α, β, therefore κ2 = 4. Ob-

serve that q̈7R(q0,x1) = x5
2 = 0 in branch α and q̈7R(q0,x1) = x5

2 = 2
√
3(x1

1)
2 6=360

0 in branch β, which proves that the seventh R joint is active in β. Figure 8
shows the 7R mechanism in two configurations each belonging to each motion
branch, where geometric constraints lead to metamorphic behavior that limits
the motion of links.

7. Conclusions365

This paper presented the first examples of reconfigurable mechanisms whose
configuration space contains tangent intersections of two branches of motion
of the same dimension. It was pointed out that these singularities cannot be
analyzed by computation of the kinematic tangent cone. In these examples, the
dimension of both branches is one. There is no theoretical restriction for design-370

ing mechanisms with this property and with mobility higher than one, however,
this is out of the scope of the presented design method. A method for detecting
branches of motion that intersect tangentially was also presented. This local
method effectively detects the branches with common tangents at their inter-
section by considering solutions of the higher-order kinematic analyses, which375

are normally not considered in bifurcation analysis.

Acknowledgement
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