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ABSTRACT Sorghum (Sorghum bicolor L.) is a major food cereal for millions of people worldwide. The sorghum genome, like other
species, accumulates deleterious mutations, likely impacting its fitness. The lack of recombination, drift, and the coupling with favor-
able loci impede the removal of deleterious mutations from the genome by selection. To study how deleterious variants impact
phenotypes, we identified putative deleterious mutations among !5.5 M segregating variants of 229 diverse biomass sorghum lines.
We provide the whole-genome estimate of the deleterious burden in sorghum, showing that !33% of nonsynonymous substitutions
are putatively deleterious. The pattern of mutation burden varies appreciably among racial groups. Across racial groups, the mutation
burden correlated negatively with biomass, plant height, specific leaf area (SLA), and tissue starch content (TSC), suggesting that
deleterious burden decreases trait fitness. Putatively deleterious variants explain roughly one-half of the genetic variance. However,
there is only moderate improvement in total heritable variance explained for biomass (7.6%) and plant height (average of 3.1% across
all stages). There is no advantage in total heritable variance for SLA and TSC. The contribution of putatively deleterious variants to
phenotypic diversity therefore appears to be dependent on the genetic architecture of traits. Overall, these results suggest that
incorporating putatively deleterious variants into genomic models slightly improves prediction accuracy because of extensive linkage.
Knowledge of deleterious variants could be leveraged for sorghum breeding through either genome editing and/or conventional
breeding that focuses on the selection of progeny with fewer deleterious alleles.
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Plant genomes continually accumulate newmutations due
to population demographichistory (Brandvain et al.

2013), random drift (Lynch and Gabriel 1990), the mating
system (Hartfield and Glémin 2014), domestication (Lu et al.

2006; Ramu et al. 2017), and linked selection due to genetic
interactions (Felsenstein 1974). While a sizeable portion of
such new mutations are neutral (Shaw et al. 2002; Covert
et al. 2013), a small portion of new mutations are likely to be
deleterious because they disrupt evolutionarily conserved
sites, protein function (Yampolsky et al. 2005; Doniger
et al. 2008), or gene expression (Kremling et al. 2018) in a
way that results in negative impacts on fitness. The elimina-
tion of deleterious mutations from breeding populations has
therefore been suggested as a prospective avenue for crop
improvement (Morrell et al. 2012; Moyers et al. 2018).

Sorghum (Sorghum bicolor L., 2n = 20) is an important
and versatile crop that is grown for food, forage, and fuel. It
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was domesticated from its wild ancestor !8000 years ago in
Africa (Wendorf et al. 1992). Five major morphological forms
have traditionally been recognized: bicolor, caudatum, durra,
guinea, and kafir.While these races arewidespread in distinct
regions of Africa, reflecting the diverse agro-ecological envi-
ronments (Dillon et al. 2007; Evans et al. 2013), sorghum has
maintained minimal genome redundancy due to the absence
of any whole-genome duplication for . 70 MY (Paterson
et al. 2004, 2009). However, inbreeding sorghum is likely
to accumulate more weakly deleterious mutations when
compared to an outcrossing species, which accumulates
strong recessive deleterious mutations that reduce the mean
fitness of the species over time (Moyers et al. 2018). Nonethe-
less, there is accumulating evidence showing that enhanced
homozygosity (Kumaravadivel and Rangasamy 1994), re-
laxed selection (Arunkumar et al. 2015), and low levels of
outcrossing (Pamilo et al. 1987; Nakayama et al. 2012) can
act to purge deleterious mutations leading to lower mutation
burden in selfing populations. Though the relative contribu-
tions of these processes to mutation burden has long been
debated, both theoretical and experimental evidence sug-
gests that reduced population size effects usually outcompete
processes that enhance the purging of deleterious mutations
caused by selfing (Bustamante et al. 2002; Slotte et al. 2010,
2013; Arunkumar et al. 2015), leading to an influx of dele-
terious mutations into selfing species.

Modernbreedinganddomestication results inan increased
mutationburden indomesticateswhencompared to theirwild
progenitors, and a decreased mutation burden in elite culti-
vars when compared to landraces (Gaut et al. 2015; Ramu
et al. 2017; Yang et al. 2017). The demographic history and
inbreeding allow deleterious variants of weaker effect to
reach appreciable frequencies owing to random drift, which
can contribute significantly to mutation burden and affect
fitness-related traits (Kono et al. 2016). An estimated 20–
30% of nonsynonymous variants are deleterious in rice (Lu
et al. 2006), Arabidopsis (Günther and Schmid 2010), maize
(Mezmouk and Ross-Ibarra 2014), and cassava (Ramu et al.
2017). Renaut and Rieseberg (2015) identified an excess of
nonsynonymous single-nucleotide polymorphisms (SNPs)
segregating in domesticated sunflower and globe artichoke
relative to natural populations. Similarly, !20–40% of pro-
tein-coding SNPs are predicted to have a deleterious allele in
maize (Mezmouk and Ross-Ibarra 2014). Indeed, deleterious
mutations are predicted to be enriched near regions of strong
selection (Chun and Fay 2011; Gaut et al. 2015; Kono et al.
2016), pointing to a potentially important role for deleterious
variants in shaping agronomic phenotypes.

Genomic selection (GS) can help to accelerate crop breed-
ing when compared to conventional phenotype-based selec-
tion approaches. In genome-wide prediction (GWP) models
employed inGS, the genetic variance ismodeled by accounting
for either the biological additive or dominant effects of the
markers that canpotentially improve thepredictionaccuracyof
phenotypic traits (Vitezica et al. 2013, 2016). Genes associated
with complex traits carry an uncertain number of deleterious

mutations distributed across the genome, and such amutation
burden contributes significantly to the total phenotypic varia-
tion of traits (Yang et al. 2017). Because deleteriousmutations
can occur in both homozygous and heterozygous states
depending on the genetic context, trait-specific and genetic-
context based GWP models could be expected to capture the
phenotypic effects of deleterious mutations. Therefore, GWP
models encompassing deleterious variants are expected to ac-
count for the total genetic contribution to and improve the
prediction accuracy of complex traits (Yang et al. 2017). How-
ever, the improvement of GWP will depend on how strongly
correlated deleterious variants are to all other variants.

In this study, we examine the contribution of putatively
deleterious variants to phenotypic variation in sorghum. We
used a racially, geographically, and phenotypically diverse
biomass sorghum population that represents the ancestry of
four major sorghum types (Brenton et al. 2016). All acces-
sions were phenotyped for two agronomic traits, dry biomass
(DBM) and plant height (PH), and for two physiological
traits, specific leaf area (SLA) and tissue starch content
(TSC), under field conditions. We performed whole-genome
resequencing (WGS) on 229 sorghum lines and identified
putative deleterious mutations in the genome. The main ob-
jectives of this studywere to determine (1)whether empirical
patterns of deleterious mutation burden differ among sor-
ghum racial groups, and (2) whether deleterious variants
improve prediction accuracy of complex traits and, if so,
whether such accuracy differs among phenotypic traits that
have different genetic architecture. To address these ques-
tions, we first identified the putative deleterious mutations
and their biological effect sizes, and then estimated an indi-
vidual mutation burden and its relationship with phenotypic
traits. Taking advantage of a Bayesian GS framework (Habier
et al. 2011), we tested the biological significance of deleteri-
ous variants on prediction of DBM, PH, SLA, and TSC.

Materials and Methods

Plant material, field experiments, and phenotypic data

A biomass sorghum diversity panel assembled for the Trans-
portation Energy Resource from Renewable Agriculture-Mobile
Energy-Crop Phenotyping Platform (TERRAMEPP) and Trans-
portation Energy Resource from Renewable Agriculture-
WaterEfficientSorghumTechnologies (TERRA-WEST)projects
was used in this study. This panel was composed of 869 lines:
339 lines coming from Fernandes et al. (2018), 117 lines
coming from Brenton et al. (2016), 273 lines coming from
Yu et al. (2016), and 140 additional lines obtained from John
Burke (United States Department of Agriculture, Lubbock,
TX). Although phenotypic data for the entire panel were col-
lected, only a subset of 229 lines for which WGS data were
available were used in the study. These 229 lines belong to
four major races of sorghum (caudatum, durra, guinea, and
kafir) with representatives from the African continent, Asia,
and the Americas (Supplemental Material, Figure S1).
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Field experiments were conducted in Illinois during
2016 in an augmented block design that consisted of
960 four-row plots with a row length of 3 m, 1.5 m alleys
and 0.76 m row spacing. All plots were arranged in 40 rows
and 24 columns. Target density of the plant population was
!270,368 plants ha21, and experiments were planted in late
May and harvested in early October. PH was measured from
the ground to the uppermost leaf whorl at seven develop-
mental stages starting 4 weeks after planting (WAP) up to
16 WAP, with an interval of 2 weeks (seven stages), and
averaged across the plot. Biomass data were collected at har-
vest using a four-row Kemper head attached to a John Deere
5830 tractor. A plot sampler equipment with a near infrared
sensor (model 130S, RCI Engineering) was used to measure
the wet weight of total biomass (lb), and to quantify biomass
moisture (%) and starch (%) contents of plants (Li et al.
2015) in the two middle rows of each four-row plot. Biomass
yield in dry U.S. tons per acre was calculated as: dry U.S. tons
per acre = total plot wet weight (lb) 3 (12plot moisture) /
(plot area in acre) 3 0.0005. Because some accessions had
flowered (38 accessions), flowering data were recorded in
2018 (flowering data were not available for 2016). We con-
ducted an additional set of analyses that had excluded these
38 accessions to assess the potential confounding effect of
flowering time on PH.

To estimate SLA, the youngest fully expanded leaves from
two randomly selected plants of the middle two rows of each
plot were excised just above the ligule 60–70 days after plant-
ing. Damaged leaves were avoided. Excised leaves were then
recut under water and the cut surface kept immersed. In the
laboratory, three 1.6-cm leaf discs were collected from the
middle of each leaf while avoiding themidrib. Leaf discs were
immediately transferred to an oven set at 60! for 2 weeks.
The dry mass of leaf discs was determined and SLA
was expressed as the ratio of fresh leaf area to dry leaf mass
(cm2 g21). Considering a 10-day interval among the SLA
sampling, we used “date of sampling” as a term in the
model to generate best linear unbiased predictors (BLUPs).

Statistical analysis of phenotypic data

Phenotypic data analysis was conducted according to exper-
imental design, which consisted of a series of incomplete
blocks connected through common checks. The following
model was used to generate BLUPs for all genotypes included
in the field trial:

yijk ¼ mþ giþ ej þbkðjÞþ geij þ eijk

where m is the overall mean, gi is the random effect of the ith
genotype, ej is the random effect of the jth environment, bk(j)
is the random effect of the kth incomplete block nestedwithin
the jth location, geij represents the effect of genotype-by-
environment interaction, and eijk is the residual error for the
ith genotype in the kth incomplete block in the jth location.

For SLA, we fitted another model that accounted for the
sampling date:

yijkl ¼ mþ giþ ej þ bkðjÞ þ dlðkjÞ þ geij þ eijkl

where m is the overall mean, gi is the random effect of the ith
genotype, ej is the random effect of the jth environment, bk(j)
is the random effect of the kth incomplete block nestedwithin
the jth environment, dl(j) is the random effect of the lth sam-
pling date nested within kth incomplete block and the jth
location, geij represents the effect of genotype-by-environment
interaction, and eijkl is the residual error for the ith genotype
in the kth incomplete block and lth sampling date in the
jth environment.

For the purpose of estimating the broad-sense heritability
(H2) of each phenotype, we estimated variance components
using the restricted maximum likelihood. All effects were
assumed to be random. Broad-sense heritability on an entry-
mean basis was calculated asH2= s2

G/(s2
G+ s2

GXE/number
of locations + s2

e/number of environments3 number of rep-
licates), where s2

G is the variance among accessions, s2
GXE is

the accession-by-environment variance, and s2
e is the error

variance. All analyses were conducted in R software (R De-
velopment Core Team 2015).

Genotyping

Genomic DNA (gDNA) was extracted using the cetyl trime-
thylammonium bromide (CTA) method and quantified using
picogreen (Molecular Probes, Eugene, OR) on a microplate
reader of Synergy HT (BioTek, Winooski, VT). After prepro-
cessing steps of the gDNA samples, 10 libraries were prepared
(24 samples in each library) and sequenced on HiSeq
4000 (PE_2x150) using sequencing kit version 1. Fastq files
were demultiplexedwith the bcl2fastq v2.17.1.14 conversion
software of Illumina. We used Sentieon Genomics Pipeline
DNA sequencing (Freed et al. 2017) and a series of custom
bash scripts to process the raw reads. Briefly, fastq files were
aligned to the Sorghum bicolor reference genome version
3.1 (https://phytozome.jgi.doe.gov). PCR duplicates were
removed, base quality was recalibrated based on a “known
SNPs” file, and recalibrated files were processed through the
Haplotype Caller (HC). No realignment around insertions/
deletions was performed. The data set therefore contained
239 samples, corresponding to 229 unique accessions, of
which seven had one or two replicates.

To create a list of known SNPs for the recalibration step,
the HC pipeline was run without recalibration on the list
of 239 BAM files. The output was filtered removing SNPs
that had a number of heterozygote genotypes across all
accessions . 10% and/or a number of heterozygote geno-
types more than two times the number of minor alleles [here-
after referred to as “homozygosity-based filter” (Chia et al.
2012)]. In addition, “SNP clusters,” defined as three or more
SNPs located within 5 bp were also filtered out. Clusters of
SNPs are often generated by misalignment and were conser-
vatively considered as spurious. The filtered list of SNPs was
used as known SNPs to recalibrate the BAM files and to gen-
erate a final list of SNPs. The vcf file generated by the HC
contained biallelic SNPs (n = 22,359,733) and was further
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filtered to only retain SNPs with at least 43 coverage (n =
21,865,512), andwith a nonmissing genotype in# 40% of the
samples (n = 14,535,156). After removing SNP clusters and
applying homozygosity-based filters, the final data set con-
tained 5,512,653 SNPs that were used for further analyses.

Identifying putatively deleterious mutations

The substitution of amino acid effect on protein function was
predicted with the Sorting Intolerant From Tolerant (SIFT)
algorithm (Vaser et al. 2016). A nonsynonymous mutation
with a SIFT score , 0.05 was defined as a putative deleteri-
ous mutation. To identify a higher-confidence set of delete-
rious mutations, we used genomic evolutionary rate profiling
(GERP . 2) (Davydov et al. 2010) estimated from a multi-
species whole-genome alignment of six species including Zea
mays, Oryza sativa, Setaria italica, Brachypodium distachyon,
Hordeum vulgare, and Musa acuminate. We therefore used
both an estimate of sequence conservation (GERP . 2) and
protein conservation (SIFT , 0.05) to identify more conser-
vative deleterious mutations (hereafter H(high-confidence)
GERPDEL-SNPs) in constrained portions of the genome. Using
these HGERPDEL-SNPs, we estimated the mutation burden,
which was defined as the number of derived deleterious al-
leles carried by an individual divided by the total number of
nonmissing alleles (Vitezica et al. 2016), based on a putative
derived deleterious allele that was defined as a minor allele
in the multi-species alignment (Yang et al. 2017). First, we
counted the total number of deleterious alleles in a given geno-
type. Here, each allele was given a score of 0.5. If both were
deleterious alleles at a given position, we counted them as
1 (0.5 for each allele). If only one allele was deleterious, then
it was counted as 0.5. We summed all these homozygous (1’s)
and heterozygous (0.5’s) deleterious alleles. Second, we
counted the total number of alleles used to score deleterious
alleles in a given genotype. Finally, the total number of delete-
rious alleles was divided by the total number of scored alleles,
and the resulting ratio was defined as the mutation burden.

To account for the effects of linkage, we calculated linkage
disequilibrium (LD) between SNPs and identified random
variants (nondeleterious) to be used as a control set to
compare with deleterious variants. A subset of 100,000 ran-
dom SNP markers were selected and all possible pairwise r2
values were calculated using Plink 1.9 (Chang et al. 2015).
Using the 1% of all the possible pairwise calculations, we
calculated the relationship of distance between markers
and r2. To define local LD structure across each chromosome,
we also calculated the mean LD score (Bulik-Sullivan et al.
2015) for each marker. LD scores were calculated with a
window of 1 Mb using the software GCTA (Yang et al.
2011; Bulik-Sullivan et al. 2015). Each LD score was divided
by the total number of SNPs within eachwindow (Figure S2).
To identify SNPs in high LDwith deleterious variants, we first
explored the effect of window size and r2 threshold on the
number of SNPs selected (Figure S3). Given the LD pattern
observed, we used a window size of 250 kb and an r2 thresh-
old of 0.9, meaning that if any marker within 250 kb of a

deleterious variants has an r2 $ 0.9, it would be excluded
from further analysis. This yielded a list of !1 million SNPs
that were in LD with deleterious SNPs, which were excluded
from all SNPs. An equal proportion of 100 sets of random
variants with the similar allele frequency range of deleterious
variants were selected (Figure S4).

Estimating effect sizes of deleterious and
nondeleterious variants

Despite the different assumptions in genetic architecture
madeby thedifferentmodels, and the fact that theQTL effects
are not of equal size and have different genetic architectures,
the simplest model ridge regression (RR)-BLUP often per-
forms just as well in extensive cross-validation and empirical
studies. Unless indicated otherwise, effect sizes were esti-
mated using the RR-BLUP model implemented in the
R-package rrBLUP version 4.2 (Endelman 2011). We fitted
the model y = m + Zu + e, where y is a vector of BLUPs of
phenotype; m is an intercept vector; and Z is an n 3 p in-
cidence matrix (either deleterious or random variants) con-
taining the allelic states of the p marker loci (z = {21, 0, 1}),
where21 represents the minor allele; u is the p3 1 vector of
marker effects; and e is a n 3 1 vector of residuals. Under
RR-BLUP, u!MVN (0, Is2

u) where s2
u is the variance of the

common distribution of marker effects and was estimated
using restricted maximum likelihood.

Partitioning of genetic variance and GWP

We compared the variance explained by deleterious vari-
ants to that of an equal proportion of randomly sampled
variants from the distribution of nondeleterious variants. Fol-
lowing the method of Brenton et al. (2016), we used a two-
dimensional sampling approach to create 100 equal-sized data
sets of randomly sampled variants matched for minor allele
frequency. For each trait, we fitted the model separately for
each variant set (either deleterious variant or nondeleterious
variant) and estimated the phenotypic variance explained.

For each variant set (deleterious variant vs. nondeleterious
set), we fitted a standard genomic (G)BLUP model including
only additive effects by fitting a linear mixed model of the
following form: y = Zg + e, where y is a vector of BLUPs for
the phenotype, the vector g is a random effect, the BLUP
represents the genomic estimated breeding values (GEBV)
for each individual, Z is a design matrix indicating observa-
tions of genotype identities, and e is a vector of residuals. The
GEBV were obtained by assuming g!MVN (0, Ks2

g), where
s2

g is the additive genetic variance and K is the square geno-
mic relationship matrix based on SNP data, implemented in
TASSEL (Bradbury et al. 2007). Predictive abilities for all
traits were evaluated using a fivefold cross-validation ap-
proach repeated 100 times and were implemented in the R
statistical software.

Data availability

Genotypic data is available in CyVerse (doi: https://doi.
org/10.25739/6yts-xq12). Phenotypic data is available at
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bitbucket (https://bitbucket.org/bucklerlab/sorghum_
geneticload/src/master). Supplemental material available at
Figshare: https://doi.org/10.25386/genetics.7638122.

Results

Around 33% of nonsynonymous substitutions are
putatively deleterious

We resequenced the whole genome of 229 diverse biomass
sorghumaccessions, belonging to four racial groups thatwere
selected to be representative of diverse geographical regions
(Figure S1) (Brown et al. 2011; Thurber et al. 2013). The
mean sequencing depth was 5.83, resulting in a data set
consisting of !5.5 M SNPs. Out of 5.5 M SNPs, !6.3% of
SNPs are located in coding regions. To determine the distri-
bution of putatively deleterious SNPs in coding regions of the
sorghum genome, we first annotated deleterious SNPs using
a SIFT score (SIFT , 0.05) that predicts an amino acid sub-
stitution effect on protein function (Vaser et al. 2016). Based
on SIFT score , 0.05, we find that !33% of the total non-
synonymous substitutions are putatively deleterious (average
SIFT score of 0.08), while 67% are predicted as tolerated mu-
tations (average SIFT score of 0.47). We estimated the “de-
rived allele” frequency (DAF) spectrum,with the derived allele
defined as a minor allele in the multi-species sequence align-
ment (Yang et al. 2017). Our results reveal that a large pro-
portion of deleterious SNPs have a lower DAF (, 0.05; Figure
1a).While DAF shows a negative associationwith GERP scores
(Figure 1b) (Yang et al. 2017), it has a positively associated
pattern with SIFT scores (Figure S5).

We then combined GERP (. 2) and SIFT (, 0.05) scores
to identify a higher-confidence set of deleterious SNPs
(HGERPDEL-SNPs; Figure S6). Unless otherwise indicated, all
further analyses were performed using HGERPDEL-SNPs. While
the majority of HGERPDEL-SNPs had an average SIFT score
of, 0.01 (Figure S6a), they also showed a low overall allele
frequency (average minor allele frequency = 0.07, Figure
S6c) that is consistent with population genetic expectations.
All identified HGERPDEL-SNPs show comparably similar distri-
butions among all chromosomes (P = 0.34; Figure S6b) and
arise from noncentromeric regions of the chromosomes (Fig-
ure S7). Our results corroborate previous studies showing
that selection acts on deleterious variants to keep them rare
(Mezmouk and Ross-Ibarra 2014), and support a combined
use of SIFT and GERP scores (Figure 1) as effective quanti-
tative measures of an observed variant for its long-term fit-
ness consequences (Yang et al. 2017).

Both deleterious and nondeleterious variants exhibit
different effect size distributions

We estimated the additive effect sizes explained by
HGERPDEL-SNPs for all phenotypic traits. An equal number of
nondeleterious variants were used as a control, which are not
in LD but have a similar minor allele frequency spectrum
of HGERPDEL-SNPs across the genome (Figure S4). We com-
pared the full density distribution of the effect sizes of both
HGERPDEL-SNPs and nondeleterious variants to avoid the win-
ner’s curse (Zöllner and Pritchard 2007; Jun et al. 2018) and
examinedwhether HGERPDEL-SNPs effect sizes are overall higher
in magnitude compared to nondeleterious variants (Figure 2).

Figure 1 Deleterious mutations in the sorghum genome. (a) Site allele-frequency spectrum of nonsynonymous deleterious mutations and synonymous
mutations in the sorghum genome. The derived allele frequency (DAF) distribution of alleles is shown where a minor allele in the multi-species alignment
was considered as a derived deleterious allele (Yang et al. 2017). (b) The allele frequency of the derived alleles in bins of different genomic evolutionary
rate profiling (GERP) scores. The vertical bars in (b) indicate SE.
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Our results show that the density distribution of the effect
sizes of both HGERPDEL-SNPs and nondeleterious variants fol-
low a similar pattern, albeit showing some subtle differences
in the density peak and distribution. The density distribution
of HGERPDEL-SNPs extends much farther than the distribution
of nondeleterious variants, both at the highest and lowest
range of distribution (Figure 2), which is similar to the re-
sults of previous studies (Zöllner and Pritchard 2007; Jun
et al. 2018). While such density distributions are consis-
tent across all traits, HGERPDEL-SNPs show different density
peaks compared to nondeleterious variants. For some traits,
HGERPDEL-SNPs show reduced-density peaks while for height
at 4WAP, HGERPDEL-SNPs show higher-density peaks com-
pared to nondeleterious variants (Figure 2, a–j).

We then compared the empirical cumulative distribution
of effect sizes of HGERPDEL-SNPs and nondeleterious vari-
ants. Using the two-sample Kolmogorov–Smirnov test, we
demonstrate that the effect sizes of both HGERPDEL-SNPs
and nondeleterious variants show different density patterns
for all phenotypes studied (Figure S8). This suggests that
HGERPDEL-SNPs have more variable effect sizes compared to
nondeleterious variants for all phenotypic traits. Indeed,
the observed variance for estimated effects across all traits
was twofold higher for HGERPDEL-SNPs, suggesting that
HGERPDEL-SNPs have substantially larger and more subtle
effects overall.

We also compared the means of folded distributions of
both HGERPDEL-SNPs and nondeleterious variants. Across all
phenotypes, HGERPDEL-SNPs have on average 30.14% (rang-
ing 0–42.34%) higher effects than those observed for non-
deleterious variants (Figure 3 and Figure S9). The average
effect sizes captured by HGERPDEL-SNPs therefore appear to
have greater effect sizes than the average effect sizes
explained by nondeleterious variants, which are consistent

with the previous results observed in maize (Yang et al.
2017), humans (Marouli et al. 2017; Jun et al. 2018), and
mice (Ji et al. 2016).

Deleterious mutation burden varies among racial
groups and negatively correlates with phenotypes

We estimated the mutation burden based on HGERPDEL-SNPs
as the count of derived deleterious alleles carried by an indi-
vidual divided by the total number of scored (nonmissing)
alleles (see Materials and Methods; Figure 4). This reveals a
substantial variation for mutation burden among racial
groups (P = 3.14 3 10205) based on the HGERPDEL-SNPs
(Figure 4a). We observed that the caudatum group is signif-
icantly higher, with an average of 36%, for homozygous mu-
tation burden as compared to other racial groups. Compared
to the median burden across all racial groups, the guinea
group has a proportionately lower burden (220%), while
the caudatum group has a proportionately higher burden
(+49%). On average, an individual typically carries 0.0112
(SD 0.006), 0.0124 (SD 0.006), 0.0140 (SD 0.006), and
0.0178 (SD 0.007) mutation burden in the homozygous state
in the guinea, durra, kafir, and caudatum groups, respec-
tively. Across all racial groups, individual mutation burden
ranges from 0.001 to 0.038 based on the HGERPDEL-SNPs,
suggesting that all racial groups showed variable mutation
burden.

Given that there is a considerable amount of admixture
present in sorghum lines, we checked if admixture influenced
the mutation burden estimation among racial groups. We
plotted the relationship between the homozygous mutation
burden and the principal components derived from genome-
wide SNP markers (Figure 4b and Figure S10). This shows
that although there are admixed lines, a tendency toward a
higher and lower mutation burden was observed for the

Figure 2 Smoothed estimate of density distribution of regression coefficients associated with highly conserved Del variants (HGERPDEL-SNPs) and
nondeleterious variants for 10 phenotypic traits [(a) biomass, (b) specific leaf area, (c) tissue starch content, and (d–j) plant height 4, 6, 8, 10, 12,
14, and 16 weeks after planting]. Del, deleterious; GERP, genomic evolutionary rate profiling.
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caudatum and guinea groups, respectively (Figure 4, a and
b). These results indicate that the deleterious mutation bur-
den estimated based on the derived deleterious allele is
largely due to the genomic architecture of racial groups,
while it is less biased with admixture.

We further evaluated the underlying relationship of mu-
tation burden with phenotypic traits. Four putative pheno-
typic fitness traits were selected for this study: DBM, PH
(seven developmental stages), SLA, and TSC. We selected
these traits because total biomass has been explicitly used as
an index of fitness in several species, as it can integrate the
overall capacity for survival and reproduction (Donovan et al.
2009; Younginger et al. 2017). PH is an ecological fitness trait
that incorporates processes for coexistence along spectra of
light gradients (Falster and Westoby 2003). SLA is generally
regarded as a useful summary ecological trait that often
strongly correlates with many key plant attributes of ecolog-
ical interest (Westoby 1998; Meziane and Shipley 1999).
Starch production and its utilization on the diurnal basis,
and its role under diverse growth conditions, is regarded as
a major integrator in the regulation of plant growth and
hence can be considered as a determinant of plant fitness
(Sulpice et al. 2009; Thalmann and Santelia 2017).

We observed a substantial phenotypic variation for all
traits among racial groups [Figure S11, biomass: P , 0.001;
SLA: P, 0.001; starch: P, 0.05; height: P=5.9e25 (4WAP),

P= 0.04 (6WAP), P= 3.1e26 (8WAP), P= 3.9e26 (10WAP),
P = 7.5e25 (12WAP), P = 0.001 (14WAP), and P , 0.05
(16WAP)], with highly heritable variation observed for PH
[H2¼ 0.87 (at 10WAP)] and biomass (H2 = 0.73), consistent
with previous studies (Brenton et al. 2016). We also found
strong correlations among traits (Figure S12).

Using a simple linear regression model between mutation
burden and phenotypic traits across all racial groups, we
consistently found a negative relationship ofmutation burden
with all phenotypic traits (Table S1). We also performed a
grouped regression combining racial groups that show paral-
lel response, and show that the combined slopes further
confirmed the negative correlations between mutation bur-
den and phenotypes (Table S1). These results suggest that
deleterious variants decrease trait fitness. However, the ma-
jority of these correlations are not significant except for PH (in
case of grouped regression only), indicating that the delete-
rious mutation burden can be strongly linked to the variation
in PH in the biomass sorghum lines studied.

Deleterious variants contribute considerably to
phenotypic variation but vary substantially
among traits

We tested whether incorporating putatively deleterious var-
iants could inform GS models and improve the GWP of
phenotypes. HGERPDEL-SNPs identified from WGS were used

Figure 3 Bar plots of means of folded distributions of effect sizes of highly conserved deleterious variants (HGERPDEL-SNPs) and nondeleterious variants
for 10 phenotypic traits [(a) biomass, (b) specific leaf area, (c) tissue starch content, and (d–j) plant height 4, 6, 8, 10, 12, 14, and 16 weeks after
planting]. GERP, genomic evolutionary rate profiling. D, deleterious; ND, nondeleterious.

Figure 4 Homozygous mutation burden in sor-
ghum. (a) Homozygous mutation burden estimated
for different racial groups of sorghum based on
highly conserved deleterious variants (HGERPDEL-SNPs).
The derived allele is defined as a minor allele from
multi-species sequence alignments (Yang et al.
2017). The mutation burden was estimated as the
count of derived deleterious alleles carried by an
individual divided by the total number of scored
(nonmissing) alleles. The horizontal broken line in-
dicates the mean of homozygous mutation burden
across all racial groups. (b) Scatter plots of homo-
zygous mutation burden and PC1 derived from ge-
nome-wide SNP markers. The black circles indicate
the median values for each group. GERP, genomic
evolutionary rate profiling; PC, principal coordinate.
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as priors and integrated into a genomic prediction framework
(Figure 5). We quantified the amount of genetic variance,
heritability, and model improvement by deleterious variants,
and compared them with those of random variants. Based on
a variance partitioning approach with a two-kernel model
(see Materials and Methods), the model with putatively
HGERPDEL-SNPs explained roughly half of the genetic variance
[biomass: 52%, SLA: 48%, starch: 46%, and PH: 45–49%
(across all stages)] (Figure 5). There was a modest improve-
ment in total heritable variance explained for biomass (7.6%,
h2 = 0.24 against 0.22 for random variants) and PH (3.1%,
h2 = 0.33 against 0.32 for random variants across seven de-
velopmental stages). However, there was no advantage re-
garding heritable variance for SLA and TSC (Figure 6, a and
b) for HGERPDEL-SNPs as compared to random variants.

We addressed the potential confounding effects of flower-
ing on PH. We performed heritability estimates based on
nonflowered lines (all flowered lines were excluded) within
and across racial groups. We observed only minor nonsignif-
icant differences on heritability and these model results are
complementary to the model results obtained using all geno-
types (Figure S13).

To evaluate the predictive ability, we performed a fivefold
cross-validation, repeated100 times,whichwas implemented
in a GBLUP model with either the HGERPDEL-SNPs or the non-
deleterious SNP data sets. Consistent with the results
of heritability, we observed 8.1 and 7.0% improvements on
predictive ability for biomass and PH (at 10–16WAP only),

respectively, while there was no improvement for SLA, TSC,
or PH at early stages (at 4–8WAP, Figure 6, c and d). These re-
sults suggest that the contribution of putative HGERPDEL-SNPs
to phenotypic variation varies considerably among traits.

Discussion

Sorghum,agenus that evolvedacross diverse environments in
Africa, exhibits a wide range of phenotypic diversity (Wright
1931; Doggett 1970; Dillon et al. 2007). This raises the ques-
tion of whether sorghum racial groups carry variable delete-
rious mutation burdens, allowing themutation consequences
to be tested for phenotypic diversity. In this study, we whole-
genome resequenced 229 biomass sorghum lines and defined
a high-confidence set of putative deleterious mutations using
SIFT (, 0.05) and GERP (. 2) scores. All racial groups of
sorghum showed variable mutation burdens (ranging from
0.001 to 0.038) that correlated negatively with phenotypic
traits. We observed that an average deleterious variant had
larger biological effects than an average nondeleterious var-
iant. We further noticed that the prediction ability of the
GWP models encompassing deleterious variants are largely
trait-dependent.

Combining the criteria of SIFT (, 0.05) and GERP (. 2)
scores, we first show that sorghum racial groups accumulate
appreciable amounts of deleterious mutations in the genome,
estimated to be !33% of total nonsynonymous substitutions
(Figure 1). Although the number and frequency of such

Figure 5 Heritability estimates for all traits using a
two-kernel model. M, model; PH4–16, plant height
at 4, 6, 8, 10, 12, 14, and 16 weeks after planting;
SLA, specific leaf area; TSC, tissue starch content.
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mutations within a population largely depends on effective
population size, our results match well with previous studies
that estimate 20–30% of nonsynonymous variants to be del-
eterious in several crop species, includingmodel plant species
(Lu et al. 2006; Günther and Schmid 2010; Mezmouk and
Ross-Ibarra 2014; Ramu et al. 2017). Considering highly fre-
quent (DAF . 0.9) mutations, there are 63 nonsynonymous
deleterious mutations across racial groups, which are distrib-
uted across all chromosomes. Thesemutations could likely be
a combination of variants of important domestication targets,
recent pseudogenes, and some truly deleterious variants that
are the product of drift (de Alencar Figueiredo et al. 2008;
Smith et al. 2018).

We next estimated an individual mutation burden as the
count of derived deleterious alleles carried by an individual
divided by the total number of scored (nonmissing) alleles,

which differed considerably among individuals and racial
groups (Figure 4). It is notable but expected, given that dif-
ferent racial groups have had varying patterns of population
dynamics, selection intensities, and domestication histories
that could detectably alter the influx of deleterious mutations
(Wendorf et al. 1992; Dillon et al. 2007; Paterson et al. 2009).
Contrasting deleterious burden has previously been reported
in different populations of crop species (Lu et al. 2006;
Renaut and Rieseberg 2015; Ramu et al. 2017) and humans
(Lohmueller et al. 2008; Fu et al. 2014; Simons et al. 2014).
Comparatively, the caudatum group appears to have a higher
mutation burden than the guinea group, the oldest of the
specialized sorghum races (Stemler et al. 1975; Harlan
et al. 1976). We propose that the higher mutation burden
of the caudatum group might be potentially related to the
population bottleneck, resulting in a smaller population size

Figure 6 Genome-wide prediction models incorporating putatively deleterious variants. (a and b) Heritability estimates for all traits using a single-kernel
model. Heritability estimates for nondeleterious variants are derived based on 100 independent sets that are randomly chosen across the genome from
variants that are not in linkage disequilibrium with deleterious variants. (c and d) Boxplots showing a fivefold cross-validation prediction ability estimation
for deleterious variants and random variants. Del, deleterious; SLA, specific leaf area; TSC, tissue starch content; WAP, weeks after planting.
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that increases the chances of inbreeding, genetic homogene-
ity, and an increased influx of deleterious mutations (Renaut
and Rieseberg 2015; Yang et al. 2017; Moyers et al. 2018).
On the other hand, a lower mutation burden in the guinea
group might be due partly to its higher outcrossing rates,
which can reach up to 20% when compared to other races
(Barro-Kondombo et al. 2010; Ranwez et al. 2017). There-
fore, our results suggest that, first, negative selection is less
effective at removing weakly deleterious mutations, yielding
variable mutation burden among racial groups. Second, the
combined effects of a bottleneck and directional selection
during domestication (Hamblin et al. 2006; Lohmueller
et al. 2008) can have an important impact on the deleterious
mutation burden even in smaller racial groups of sorghum in
which founder events can be more frequent (Charlesworth
and Wright 2001; Szövényi et al. 2014).

Although informative, our estimation of mutation burden
has some important limitations. First, the deleterious muta-
tions identified in the population were based on the degree of
sequence conservation, which is often poorly constructed.
Second, our derivation of deleterious mutations does not
include noncoding or structural variants, which can contrib-
ute substantially to the total load of deleterious mutations
(Huang et al. 2017; Bastarache et al. 2018). Third, our bur-
den estimation assumes equal fitness effects for all mutations,
which is unlikely, as mutations can have different fitness ef-
fects that can vary with environments (Henn et al. 2016).
Fourth, we consider the same sign of the effect when esti-
mating the burden, which would be misestimated, as some
deleterious mutations may be locally adaptive or neutral
(Vikram et al. 2015; Bastarache et al. 2018). Nonetheless,
despite these caveats, our findings revealed a substantial ge-
nomic burden of deleterious mutations in sorghum.

We investigated the phenotypic effects of deleterious mu-
tations (Table S1). We found negative correlations between
mutationburdenandphenotypic traits, suggesting a consider-
able cost of deleterious mutations on phenotypic traits (Yang
et al. 2017) in a species that has been subjected to recent
demographic expansion (Hamblin et al. 2006). Consistently,
we find that an average deleterious variant has demonstrably
larger biological effect, which could likely have an important
impact contributing to heritable phenotypic variation (Figure 2
and Figure 3). In grasses, it has been previously shown that
heritable phenotypic variation can be increased as much as
0.1–1% by new mutations (Sprague et al. 1960; Houle et al.
1996; Bataillon 2000). However, the fate of such large-effect
mutations on phenotypes is unclear, and whether such muta-
tions are attributable to unconditional deleteriousness or can
grant adaptable heritable variation to diverse growing condi-
tions has been actively debated (Glémin and Bataillon 2009).
Nonetheless, previous studies have revealed novel variations of
genes resulting from postdomestication mutations in sorghum
and suggest that neodiversity contributed to new adaptations
(de Alencar Figueiredo et al. 2008; Glémin and Bataillon 2009).

Across four traits,wefind thatputativelydeleterious alleles
explain roughly one-half of the genetic variance (46–49%),

but that there is only a moderate improvement in total her-
itable variance explained for biomass (7.6%) and PH (3.1%).
Additionally, there is no advantage for SLA and TSC (Figure 5
and Figure 6). Such a difference in the contribution of dele-
terious variants to phenotypic traits was recently observed in
maize where dominance contributed substantially to grain
yield, while phenology traits appeared to be largely additive
(Yang et al. 2017). Though the effects of mutations being
deleterious or compensatory depends greatly upon the ge-
netic background into which that mutation is incorporated
(Moyers et al. 2018), the trivial contributions of mutations to
SLA and TSC indicate that such mutations could be either
nearly neutral or negatively synergistic. Therefore, our re-
sults support the proposition that deleterious mutational ef-
fects vary with phenotypic traits and appear to be often larger
for fitness-related quantitative traits, while they are unclear
for traits that are not directly linked to fitness (Park et al.
2011). Fitness-related quantitative traits, which are expected
to have a more complex genetic architecture, could poten-
tially carry a higher polygenic mutation burden that could
considerably affect phenotypes (Purcell et al. 2014). Also,
such expectations are in line with the longstanding under-
standing that fitness-linked quantitative traits showing direc-
tional dominance generally exhibit inbreeding depression
(Wright 1931; Kelly 1999; Charlesworth and Charlesworth
1999), which indeed is strongly linked to the degree of del-
eterious burden in the genome (Mezmouk and Ross-Ibarra
2014).

Finally, although our study did not account for sampling
errorwhile estimating an individual deleterious variant effect,
which is generally greater for rare variants (Jun et al. 2018),
our heritability estimates are consistent with the prediction
abilities of phenotypic traits. Therefore, our work adds to
ongoing GWP efforts to explore the cumulative effects of
deleterious mutations on phenotypic diversity (Yang et al.
2017; Moyers et al. 2018). However, since rare deleterious
variants are less correlated with each other and their associ-
ations greatly suffer from low statistical power (Park et al.
2011; Auer and Lettre 2015), employing either gene- and/or
family-based approaches (Auer and Lettre 2015; Ji et al.
2016; Jun et al. 2018), or leveraging the phenotypic patterns
(Bastarache et al. 2018), in which deleteriousmutations have
detectable phenotypic consequences would assist in examin-
ing how rare deleterious mutations shape an individual
phenotype.

Conclusions

We used phenotypic and genomic data from different racial
groups of sorghum to show that sorghum accumulates an
appreciable number of deleterious mutations in the genome.
Mutation burden differs substantially among racial groups
that negatively correlate with phenotypes. GSmodels encom-
passing deleteriousmutations showvariable predictive ability
across traits and, given the relatively high level of population
structure in sorghum, disentangling deleterious effects at the
single-variant levelwould take a tremendous amount of effort
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and recombination. Deleterious variants could be prioritized
through work with intermediate phenotypes or with more
extensive evolutionary analysis amongclosely related species.
Both of these avenues, if combined with high-throughput
genome editing and conventional breeding approaches in-
volving parental lines with fewer deleterious variants, could
be used to systematically start removing deleterious variants
from elite sorghum lines.
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burden of deleterious variants in essential genes in autism spec-
trum disorder. Proc. Natl. Acad. Sci. USA 113: 15054–15059.
https://doi.org/10.1073/pnas.1613195113

Jun, G., A. Manning, M. Almeida, M. Zawistowski, A. R. Wood et al.,
2018 Evaluating the contribution of rare variants to type 2 di-
abetes and related traits using pedigrees. Proc. Natl. Acad. Sci.
USA 115: 379–384. https://doi.org/10.1073/pnas.1705859115

Kelly, J. K., 1999 An experimental method for evaluating the
contribution of deleterious mutations to quantitative trait var-
iation. Genet. Res. 73: 263–273. https://doi.org/10.1017/
S0016672399003766

Kono, T. J. Y., F. Fu, M. Mohammadi, P. J. Hoffman, C. Liu et al.,
2016 The role of deleterious substitutions in crop genomes.
Mol. Biol. Evol. 33: 2307–2317. https://doi.org/10.1093/mol-
bev/msw102

Kremling, K. A. G., S.-Y. Chen, M.-H. Su, N. K. Lepak, M. C. Romay
et al., 2018 Dysregulation of expression correlates with rare-
allele burden and fitness loss in maize. Nature 555: 520–523.
https://doi.org/10.1038/nature25966

Kumaravadivel, N., and S. R. S. Rangasamy, 1994 Plant regener-
ation from sorghum anther cultures and field evaluation of
progeny. Plant Cell Rep. 13: 286–290. https://doi.org/10.1007/
BF00233321

Li, J., M.-G. C. Danao, S.-F. Chen, S. Li, V. Singh et al.,
2015 Prediction of starch content and ethanol yields of sor-
ghum grain using near infrared spectroscopy. J. Infrared Spec-
trosc. 23: 85–92. https://doi.org/10.1255/jnirs.1146

Lohmueller, K. E., A. R. Indap, S. Schmidt, A. R. Boyko, R. D.
Hernandez et al., 2008 Proportionally more deleterious genetic
variation in European than in African populations. Nature 451:
994–997. https://doi.org/10.1038/nature06611

Lu, J., T. Tang, H. Tang, J. Huang, S. Shi et al., 2006 The accu-
mulation of deleterious mutations in rice genomes: a hypothesis
on the cost of domestication. Trends Genet. TIG 22: 126–131.
https://doi.org/10.1016/j.tig.2006.01.004

Lynch, M., and W. Gabriel, 1990 Mutation load and the survival
of small populations. Evolution 44: 1725–1737. https://doi.
org/10.1111/j.1558-5646.1990.tb05244.x

Marouli, E., M. Graff, C. Medina-Gomez, K. S. Lo, A. R. Wood et al.,
2017 Rare and low-frequency coding variants alter human
adult height. Nature 542: 186–190. https://doi.org/10.1038/
nature21039

Meziane, D., and B. Shipley, 1999 Interacting determinants of
specific leaf area in 22 herbaceous species: effects of irradiance
and nutrient availability. Plant Cell Environ. 22: 447–459.
https://doi.org/10.1046/j.1365-3040.1999.00423.x

Mezmouk, S., and J. Ross-Ibarra, 2014 The pattern and distribu-
tion of deleterious mutations in maize. G3 (Bethesda) 4: 163–
171. https://doi.org/10.1534/g3.113.008870

Morrell, P. L., E. S. Buckler, and J. Ross-Ibarra, 2012 Crop geno-
mics: advances and applications. Nat. Rev. Genet. 13: 85–96.
https://doi.org/10.1038/nrg3097

Moyers, B. T., P. L. Morrell, and J. K. McKay, 2018 Genetic costs of
domestication and improvement. J. Hered. 109: 103–116.
https://doi.org/10.1093/jhered/esx069

Nakayama, S.-I., S. Shi, M. Tateno, M. Shimada, and K. R. Takahasi,
2012 Mutation accumulation in a selfing population: conse-
quences of different mutation rates between selfers and out-
crossers. PLoS One 7: e33541. https://doi.org/10.1371/journal.
pone.0033541

Pamilo, P., M. Nei, and W.-H. Li, 1987 Accumulation of mutations
in sexual and asexual populations. Genet. Res. 49: 135–146.
https://doi.org/10.1017/S0016672300026938

Park, J.-H., M. H. Gail, C. R. Weinberg, R. J. Carroll, C. C. Chung
et al., 2011 Distribution of allele frequencies and effect sizes
and their interrelationships for common genetic susceptibility
variants. Proc. Natl. Acad. Sci. USA 108: 18026–18031. https://
doi.org/10.1073/pnas.1114759108

Paterson, A. H., J. E. Bowers, and B. A. Chapman, 2004 Ancient
polyploidization predating divergence of the cereals, and its con-
sequences for comparative genomics. Proc. Natl. Acad. Sci. USA
101: 9903–9908. https://doi.org/10.1073/pnas.0307901101

Paterson, A. H., J. E. Bowers, R. Bruggmann, I. Dubchak, J. Grimwood
et al., 2009 The Sorghum bicolor genome and the diversifica-
tion of grasses. Nature 457: 551–556. https://doi.org/10.1038/
nature07723

Purcell, S. M., J. L. Moran, M. Fromer, D. Ruderfer, N. Solovieff
et al., 2014 A polygenic burden of rare disruptive mutations
in schizophrenia. Nature 506: 185–190. https://doi.org/
10.1038/nature12975

Ramu, P., W. Esuma, R. Kawuki, I. Y. Rabbi, C. Egesi et al.,
2017 Cassava haplotype map highlights fixation of deleterious
mutations during clonal propagation. Nat. Genet. 49: 959–963.
https://doi.org/10.1038/ng.3845

Ranwez, V., A. Serra, D. Pot, and N. Chantret, 2017 Domestication
reduces alternative splicing expression variations in sorghum.
PLoS One 12: e0183454. https://doi.org/10.1371/journal.
pone.0183454

R Development Core Team 2015 R: A language and environment
for statistical computing. R Foundation for Statistical Comput-
ing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.
R-project.org.

Renaut, S., and L. H. Rieseberg, 2015 The accumulation of del-
eterious mutations as a consequence of domestication and

1086 R. Valluru et al.

https://doi.org/10.1101/115717
https://doi.org/10.1016/j.ajhg.2014.09.006
https://doi.org/10.1016/j.tig.2015.10.002
https://doi.org/10.1016/j.tig.2015.10.002
https://doi.org/10.1111/j.1469-8137.2009.02884.x
https://doi.org/10.1007/s00122-010-1299-4
https://doi.org/10.1186/1471-2105-12-186
https://doi.org/10.1186/1471-2105-12-186
https://doi.org/10.1534/genetics.105.054312
https://doi.org/10.1534/genetics.113.158196
https://doi.org/10.1073/pnas.1510805112
https://doi.org/10.1038/ng.3810
https://doi.org/10.1038/ng.3810
https://doi.org/10.1073/pnas.1613195113
https://doi.org/10.1073/pnas.1705859115
https://doi.org/10.1017/S0016672399003766
https://doi.org/10.1017/S0016672399003766
https://doi.org/10.1093/molbev/msw102
https://doi.org/10.1093/molbev/msw102
https://doi.org/10.1038/nature25966
https://doi.org/10.1007/BF00233321
https://doi.org/10.1007/BF00233321
https://doi.org/10.1255/jnirs.1146
https://doi.org/10.1038/nature06611
https://doi.org/10.1016/j.tig.2006.01.004
https://doi.org/10.1111/j.1558-5646.1990.tb05244.x
https://doi.org/10.1111/j.1558-5646.1990.tb05244.x
https://doi.org/10.1038/nature21039
https://doi.org/10.1038/nature21039
https://doi.org/10.1046/j.1365-3040.1999.00423.x
https://doi.org/10.1534/g3.113.008870
https://doi.org/10.1038/nrg3097
https://doi.org/10.1093/jhered/esx069
https://doi.org/10.1371/journal.pone.0033541
https://doi.org/10.1371/journal.pone.0033541
https://doi.org/10.1017/S0016672300026938
https://doi.org/10.1073/pnas.1114759108
https://doi.org/10.1073/pnas.1114759108
https://doi.org/10.1073/pnas.0307901101
https://doi.org/10.1038/nature07723
https://doi.org/10.1038/nature07723
https://doi.org/10.1038/nature12975
https://doi.org/10.1038/nature12975
https://doi.org/10.1038/ng.3845
https://doi.org/10.1371/journal.pone.0183454
https://doi.org/10.1371/journal.pone.0183454
http://www.R-project.org
http://www.R-project.org


improvement in sunflowers and other composite crops. Mol. Biol.
Evol. 32: 2273–2283. https://doi.org/10.1093/molbev/msv106

Shaw, F. H., C. J. Geyer, and R. G. Shaw, 2002 A comprehensive
model of mutations affecting fitness and inferences for Arabi-
dopsis thaliana. Evolution 56: 453–463. https://doi.org/
10.1111/j.0014-3820.2002.tb01358.x

Simons, Y. B., M. C. Turchin, J. K. Pritchard, and G. Sella,
2014 The deleterious mutation load is insensitive to recent
population history. Nat. Genet. 46: 220–224. https://doi.org/
10.1038/ng.2896

Slotte, T., J. P. Foxe, K. M. Hazzouri, and S. I. Wright,
2010 Genome-wide evidence for efficient positive and purify-
ing selection in Capsella grandiflora, a plant species with a large
effective population size. Mol. Biol. Evol. 27: 1813–1821.
https://doi.org/10.1093/molbev/msq062

Slotte, T., K. M. Hazzouri, J. A. Ågren, D. Koenig, F. Maumus et al.,
2013 The Capsella rubella genome and the genomic conse-
quences of rapid mating system evolution. Nat. Genet. 45:
831–835. https://doi.org/10.1038/ng.2669

Smith, O., W. V. Nicholson, L. Kistler, E. Mace, A. Clapham et al.,
2018 A domestication history of dynamic adaptation and ge-
nomic deterioration in sorghum. bioRxiv. Available at: https://
doi.org/10.1101/336503

Sprague, G. F., W. A. Russell, and L. H. Penny, 1960 Mutations
affecting quantitative traits in the selfed progeny of doubled
monoploid maize stocks. Genetics 45: 855–866.

Stemler, A. B. L., J. R. Harlan, and J. M. J. de Wet,
1975 Evolutionary history of cultivated sorghums (Sorghum
bicolor [Linn.] Moench) of Ethiopia. Bull. Torrey Bot. Club
102: 325–333. https://doi.org/10.2307/2484758

Sulpice, R., E.-T. Pyl, H. Ishihara, S. Trenkamp, M. Steinfath et al.,
2009 Starch as a major integrator in the regulation of plant
growth. Proc. Natl. Acad. Sci. USA 106: 10348–10353. https://
doi.org/10.1073/pnas.0903478106

Szövényi, P., N. Devos, D. J. Weston, X. Yang, Z. Hock et al.,
2014 Efficient purging of deleterious mutations in plants with
haploid selfing. Genome Biol. Evol. 6: 1238–1252. https://doi.
org/10.1093/gbe/evu099

Thalmann, M., and D. Santelia, 2017 Starch as a determinant of
plant fitness under abiotic stress. New Phytol. 214: 943–951.
https://doi.org/10.1111/nph.14491

Thurber, C. S., J. M. Ma, R. H. Higgins, and P. J. Brown,
2013 Retrospective genomic analysis of sorghum adaptation
to temperate-zone grain production. Genome Biol. 14: R68.

Vaser, R., S. Adusumalli, S. N. Leng, M. Sikic, and P. C. Ng,
2016 SIFT missense predictions for genomes. Nat. Protoc.
11: 1–9. https://doi.org/10.1038/nprot.2015.123

Vikram, P., B. P. M. Swamy, S. Dixit, R. Singh, B. P. Singh et al.,
2015 Drought susceptibility of modern rice varieties: an effect
of linkage of drought tolerance with undesirable traits. Sci. Rep.
5: 14799. https://doi.org/10.1038/srep14799

Vitezica, Z. G., L. Varona, and A. Legarra, 2013 On the additive
and dominant variance and covariance of individuals within the
genomic selection scope. Genetics 195: 1223–1230. https://doi.
org/10.1534/genetics.113.155176

Vitezica, Z. G., L. Varona, J.-M. Elsen, I. Misztal, W. Herring et al.,
2016 Genomic BLUP including additive and dominant variation
in purebreds and F1 crossbreds, with an application in pigs. Genet.
Sel. Evol. 48: 6. https://doi.org/10.1186/s12711-016-0185-1

Wendorf, F., A. E. Close, R. Schild, K. Wasylikowa, R. A. Housley
et al., 1992 Saharan exploitation of plants 8,000 years BP.
Nature 359: 721–724. https://doi.org/10.1038/359721a0

Westoby, M., 1998 A leaf-height-seed (LHS) plant ecology strat-
egy scheme. Plant Soil 199: 213–227. https://doi.org/10.1023/
A:1004327224729

Wright, S., 1931 Evolution in mendelian populations. Genetics
16: 97–159.

Yampolsky, L. Y., F. A. Kondrashov, and A. S. Kondrashov,
2005 Distribution of the strength of selection against amino
acid replacements in human proteins. Hum. Mol. Genet. 14:
3191–3201. https://doi.org/10.1093/hmg/ddi350

Yang, J., S. H. Lee, M. E. Goddard, and P. M. Visscher, 2011 GCTA:
a tool for genome-wide complex trait analysis. Am. J. Hum.
Genet. 88: 76–82. https://doi.org/10.1016/j.ajhg.2010.11.011

Yang, J., S. Mezmouk, A. Baumgarten, E. S. Buckler, K. E. Guill
et al., 2017 Incomplete dominance of deleterious alleles con-
tributes substantially to trait variation and heterosis in maize.
PLoS Genet. 13: e1007019. https://doi.org/10.1371/journal.
pgen.1007019

Younginger, B. S., D. Sirová, M. B. Cruzan, and D. J. Ballhorn,
2017 Is biomass a reliable estimate of plant fitness?1. Appl.
Plant Sci. 5: 1600094. https://doi.org/10.3732/apps.1600094

Yu, X., X. Li, T. Guo, C. Zhu, Y. Wu et al., 2016 Genomic pre-
diction contributing to a promising global strategy to turbo-
charge gene banks. Nat. Plants 2: 1–7.

Zöllner, S., and J. K. Pritchard, 2007 Overcoming the winner’s curse:
estimating penetrance parameters from case-control data. Am.
J. Hum. Genet. 80: 605–615. https://doi.org/10.1086/512821

Communicating editor: T. Juenger

Deleterious Mutations in Sorghum 1087

View publication statsView publication stats

https://doi.org/10.1093/molbev/msv106
https://doi.org/10.1111/j.0014-3820.2002.tb01358.x
https://doi.org/10.1111/j.0014-3820.2002.tb01358.x
https://doi.org/10.1038/ng.2896
https://doi.org/10.1038/ng.2896
https://doi.org/10.1093/molbev/msq062
https://doi.org/10.1038/ng.2669
https://doi.org/10.1101/336503
https://doi.org/10.1101/336503
https://doi.org/10.2307/2484758
https://doi.org/10.1073/pnas.0903478106
https://doi.org/10.1073/pnas.0903478106
https://doi.org/10.1093/gbe/evu099
https://doi.org/10.1093/gbe/evu099
https://doi.org/10.1111/nph.14491
https://doi.org/10.1038/nprot.2015.123
https://doi.org/10.1038/srep14799
https://doi.org/10.1534/genetics.113.155176
https://doi.org/10.1534/genetics.113.155176
https://doi.org/10.1186/s12711-016-0185-1
https://doi.org/10.1038/359721a0
https://doi.org/10.1023/A:1004327224729
https://doi.org/10.1023/A:1004327224729
https://doi.org/10.1093/hmg/ddi350
https://doi.org/10.1016/j.ajhg.2010.11.011
https://doi.org/10.1371/journal.pgen.1007019
https://doi.org/10.1371/journal.pgen.1007019
https://doi.org/10.3732/apps.1600094
https://doi.org/10.1086/512821
https://www.researchgate.net/publication/330253413

