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26th March 2021 

Addressing the editor,  

 

Thank you for considering our manuscript for publication in this special edition of Landscapes and 

Urban Planning. The submitted manuscript is revised as instructed following the feedback we 

received earlier in the year (LANDUP-D-20-00215). The editor (Joan Iverson Nassauer) requested 

that we re-submit including a cover letter outlining our intention to resubmit to the special edition.  
Our submission includes an in-depth table of revisions addressing each concern raised by the three 

reviewers and Guest Editor (Jim Spencer). The two main concerns raised were related to the 

reliability of the data and the theoretical framing of the problem. We feel that both have been 

addressed adequately. We have included much more detail about the validity of the data, including 

supplementary material demonstrating a strong correlation between suspected daily cases and 

confirmed daily cases for our region over the period of our research. Regarding framing, we have 

restructured the research around bioecological models.  

In addition to the current manuscript, we previously submitted a perspective piece which is 

complimentary to the research presented here. In light of the changes made to the current manuscript, 

we will also need to make some revisions to the perspective piece. If the current manuscript is 

selected for publication, we would be happy to revise the perspective piece for the special edition, or 

for a later edition. The second manuscript is brief and could be ready for resubmission shortly if 

desired.  

 

Kind regards, 

 

 

 

Dr Harriet Elizabeth Moore,  

On behalf of Professor’s Siriwardena, Law, Thomas, Gussy and Tanser, Bartholomew Hill, and 

Robert Spaight, and the EDGE Consortium.   

Cover Letter



Response to reviewers for LANDUP-D-21-00412    

 

Addressing the Co-Chief-in-Editor and Special Edition Guest Editor,  

Thank you for the opportunity to resubmit our manuscript LANDUP-D-21-00412. We have 

considered all comments from the Guest Editor and two Reviewers carefully and made further 

substantial changes to the manuscript which we feel improves the overall quality and clarity. The 

table below details the changes we have made and, in some cases, our explanation for why 

requested changes have not been made. As instructed, we have prioritised the comments and 

suggestions of the Guest Editor and endeavoured to address these as clearly as possibly in our 

revisions.  

Kindly,  

Dr Harriet Moore, on behalf of the research team.  

Reviewer Comment Response Section 

Guest Editor 

Thank you for resubmitting the manuscript 
for review. i believe that you have a made 
substantive changes and explained your 
thinking in several places that clarifies the 
intents of the paper. In general, i think that 
the paper is publishable with some revisions 
based mostly on Reviewer #1. While Reviewer 
#2 brings up some interesting points, I believe 
that you have framed this paper's 
contributions as related to a methodology for 
targeting public/medical efforts rather than 
as a set of established "scientific" findings. In 
this way, the simple techniques of geocoding 
999 calls is something of possible use to 
health professionals - is this the first time 
used? What kinds of policies might it imply? 

We thank the Guest Editor for the recommendation to 
publish with revisions. We agree that the contribution of 
the manuscript is in part methodological. However, we 
feel the study also sheds light on vulnerable regions and 
factors that may explain vulnerability in relation to 
COVID-19. Suspected cases of respiratory virus have 
been used elsewhere to consider early patterns of 
vulnerability during the H1N1 outbreak in London 
(Balasegaram et al., 2012). Balasegaram et al. (2012) 
drew links between vulnerability and deprivation using 
clinical reports of suspected H1N1. This study linked 
resident postcodes to IMD scores to explore the 
relationship between poverty and severe illness. Our 
study uses the clinical reports of paramedics to identify 
vulnerable regions in real time during a pandemic, as 
well as to explore landscape scale factors, including 
deprivation, that may explain vulnerability. 
 
As the Guest Editor suggests, our methodology is a novel 
approach that health professionals could use in the early 
months of a pandemic to identify communities who may 
be vulnerable to severe illness and require additional 
support from community medical services. As 
suggested, we have included more specific mention of 
the novelty of the approach in the introduction section: 
 
To our knowledge, ambulance data have not previously 
been utilised to identify communities that may be 
vulnerable to severe illness from COVID-19 or to 
investigate social and environmental factors that may 
influence vulnerability. Our novel methodology presents 
an opportunity for health professionals to identify and 
support vulnerable communities who are likely to 

Section 1 

Response to Reviewers (without Author Details)



experience severe illness from a new virus in the early 
phase of a pandemic. 

? If the contribution is the method, then  I do 
think, however, that the paper needs to 
reinforce this basic contribution better and 
make it clearer, especially in the context of 
the landscapes that define these clusters (e.g. 
tobacconists, fast-food outlets, bars, etc)? 
What might a cluster-based intervention 
related to these landscapes look like. these 
are speculative suggestions, but based on 
preliminary analysis. Doing this will force you 
to develop a proposition associated with each 
cluster landscape variable. 

Thank you, we agree and have clarified the landscape-
related features that need to be considered in a cluster-
based intervention. Our study uses the AHAHI which was 
developed drawing on the evidence which links 
landscape-related features and health outcomes. In the 
manuscript (Section 3.3) we specify:  
 
According to Daras et al. (2019) healthy features of 
landscapes associated with more positive health 
outcomes include closer proximity to active and passive 
green space as well as health services, such as general 
practitioners and emergency departments. Hazardous 
features of landscapes associated with poorer health 
outcomes include poor air quality, further distance from 
healthy features of landscapes, and closer proximity to 
retail vendors like fast food outlets, tobacconists, off-
license stores, pubs, bars, and clubs. 
 
We have added a brief statement to this section 
outlining a proposition for the association between 
healthy features of landscapes and expected health 
outcomes related to severe cases of COVID-19, and the 
associated between hazardous features of landscapes 
and expected health outcomes related to severe cases 
of COVID-19:  
 
The AHAHI is a validated metric that synthesises features 
of built environments that are commonly related to 
health outcomes in the wider health literature (Green et 
al., 2018) 
 
According to Daras et al. (2019) healthy features of 
landscapes associated with more positive health 
outcomes include closer proximity to active and passive 
green space as well as health services, such as general 
practitioners and emergency departments. This is 
because physical access to health services is associated 
with health service use and health maintenance. Thus, 
we might expect to observe lower rates of suspected 
severe COVID-19 located nearer to the health services 
and healthy features of physical environments included 
in our analysis, such as green and blue spaces (Table 1). 
We might also expect lower rates in areas with better air 
quality, including lower levels of Nitrogen Dioxide, 
Particulate Matter, Sulphur Dioxide.  
 
Hazardous features of landscapes associated with poorer 
health outcomes include poor air quality, further 
distance from healthy features of landscapes, and closer 

 



proximity to retail vendors like fast food outlets, 
tobacconists, off-license stores, pubs, bars, and clubs. 
This is because distance from hazardous retail 
environments is a proxy measure for individual 
behaivour; people who live closer to fast food outlets are 
more likely to consume fast food, and subsequently to 
experience underlying health conditions like diabetes 
and obesity (Green et al., 2018). On this basis, we could 
anticipate that unusual clusters of suspected COVID-19 
are likely to occur closer to retail vendors, further from 
health services and healthy physical environments, and 
in areas with poorer air quality.  
 
We hope that these alterations clarify the relationship 
between landscape features and health outcomes.  
Regarding how we have interpreted the results of our 
analysis and how these results translate into 
recommendations, please see the below. Further, we 
emphasise that our analysis considers the cumulative 
effect of numerous health related behaviours rather 
than the specific effect of each on health outcomes. This 
is intentional and is the novelty of our approach. 
Underlying health problems related to severe COVID-19, 
such as diabetes and obesity, are associated with 
multiple lifestyle characteristics (e.g., not exercising, 
poor diet, smoking) rather than one specific element of 
lifestyles. These lifestyle characteristics tend to cluster 
together. Thus, from a policy perspective, it is very 
difficult to target recommendations at specific retail 
outlets. A more pragmatic approach is to reinforce the 
need for urban planning and economic incentives that 
encourage low-income families to lead healthier 
lifestyles. See below.  

Why might these businesses be relevant? 
Because there is a proprietor there managing 
people, or because it is where people are 
likely to get infected; if the latter, then the 
intervention might be a first aid kit for the 
businesses, or better instructions on public 
walls for what to do, while if the latter, then 
maybe a targeted approach for examining 
wastewater for COVID-19 viruses (something 
that is currently being done for hypothesized 
clusters).  
 

Thank you for the request for clarification. The 
relationship between landscape features and health 
outcomes varies according to features of landscapes 
related to exposure and features of landscapes related 
to underlying susceptibility. In some cases, such as 
passive green space, it is appropriate to suggest 
interventions such as stricter enforcement of social 
distancing in parks and arboretums (see below). In other 
cases, such as access to tobacconists, fast food outlets, 
or off-licenses, health outcomes reflect individual choice 
and behaviours that may increase susceptibility to 
severe illness, which may be amenable to public health 
measures. 

See 
changes to 
Section 6.2 
and Section 
7 below 

Some other important revisions and 
considerations: 1) reviewer 2 notes that your 
model is able to detect only 42% of cluster 
membership, but you also state that it 
captures 99% of non-cluster cases. Rather 

The clusters were identified through spatial analysis 
using SatScan software. The regression analysis is 
separate and explores features of landscapes that 
explain whether an individual case falls into a cluster or 
occurs outside of a cluster. The regression model does 

Section 6.1  



than focus on these numbers as facts, it can 
clarify what this means in practice for an 
emergency manager. E.g. they can be certain 
that a "non-cluster" case should be treated as 
a "one-off" kind of case and further 
surveillance is not needed in that area. This is 
the kind of policy interpretation needed to 
translate the numeric findings into 
recommended action, and what makes a 
methodology defined in real time utility 
useful in decision-making, even if it is 
scientifically imperfect. 
 

not alter which cases occur in clusters or outside of 
clusters, it demonstrates how well the factors in the 
model predict cluster/non-cluster membership. The 
location of clusters remains the same regardless of the 
predictive accuracy of the regression model.  
 
Overall good model fit for binary logistic regression is 
around 70%. Our overall model fit is much higher which 
suggests that the factors in the model explain whether 
individual cases fall into clusters or occur outside of 
clusters well. The predictive accuracy for cases in 
clusters is acceptable even though it is lower than for 
cases outside of clusters. This is not uncommon when 
the number of cases in one condition (non-cluster) is 
substantially larger than the number of cases in the 
second condition (cluster). In the manuscript in a 
footnote:  
 
The asymmetry in predictive accuracy for cases 
appearing in clusters compared to cases not appearing 
in clusters is a common phenomenon of highly unequal 
datasets (Calabrese, 2014) and reflects the true rarity of 
cases appearing in clusters.  
 
Further, the predictive accuracy of a binary logistic 
model does not translate into the proportion of times 
policy makers should target a region for intervention 
(with reference to Reviewer Two comments). The model 
fit indicates the proportion of variance observed that is 
accurately predicted by the model. It is an indication of 
how likely the factors in the model are to explain group 
membership. For behavioural research, as compared to 
physical research (e.g., using environmental data) 
predictive accuracy above 50% is very unusual. This does 
not negate the value of the findings.  
 
We have added a comment to the discussion that 
addresses the varying predictive accuracy of the model 
for each condition (Section 6.1).  

2) in the introductory sections of the paper 
there are a number of typos, and in one case i 
am unsure if you mean "usual" or "unusual" 
clusters (an important distinction). beyond 
these, however, i think that greater and more 
consistent precision on what is meant can 
clarify a lot of issues that make it more 
confusing than need be. For example, in teh 
abstract: "exposure" = "geographic 
exposure"? "susceptibility" = "individual 
susceptibility"? "vulnerable 
communities"="vulnerable geographic 

Thank you for these suggestions. We have made 
numerous changes to text to clarify these, and other, 
points, as advised.  
 
However, we are unclear on some of these suggestions. 
We have defined susceptibility as related to underlying 
health issues. Exposure is related to exposure to the 
COVID-19 virus. Exposure can occur for numerous 
reasons which are explored in the manuscript, such as 
urban density, crowded living arrangements, or nature 
of employment. These ideas cannot be summed up as 
one type of ‘exposure’. These ideas are expounded in 

Section 1 



communities"? "factors" = "geographic 
factors"? These qualifiers can clarify some of 
the issues that seem to have confused 
reviewer 2.  Please look through the entire 
initial section and see where you can be more 
specific to keep the analysis clearer. 
 

the body of the manuscript. The abstract is necessarily a 
summary of the key ideas. 
 
We have changed all references in the introduction of 
‘communities’ to ‘communities and regions’ to clarify for 
Reviewer 2.  

3) the primary methodological weakness - 
and one that the paper seems not to address 
adequately - is the 999 call denominator. The 
model adequately controls for population 
density, but does it account for selection bias 
in all 999 calls? In other words, some areas 
may have no telecom access, so no 999 calls 
come in for anything (including but not 
limited to COVID calls). This does not mean 
that COVID-19 does not occur there, but it 
never show up in the data. some recognition 
of this and possible implications is needed, 
and i did not see it (though perhaps I missed 
it). adn again, linking it to policy 
interventions, the model shows that there are 
clusters of COVID cases, even though this 
methodological limitation may mean that 
there are disproportionately larger clusters in 
999 call deserts, it can still be useful. The 
policy goal is the identify large numbers of 
cases to target effectively, while the scientific 
goal may be to optimize resource investment. 
The latter "perfect" should not be the enemy 
of the "good" former.  

We agree, this is a common feature of health services 
data which captures people who present to and are able 
to access services rather than those who choose not to 
or are unable to use services, sometimes referred to as 
the ‘iceberg’ of illness (Hannay 1980).  
 
Our analysis focusses on ‘severe illness’ from COVID-19 
where emergency services are required to transport 
patients to hospital rather than all such cases and have 
ensured this is a consistent narrative throughout the 
manuscript.  
 
The policy goal, in the context of our manuscript, is to 
identify regions with communities that are more 
vulnerable to severe illness leading to an ambulance call, 
rather than to identify regions with the highest number 
of community cases.  
 
Further, the cluster analysis conducted in SatScan scans 
for unusual clusters per population. Thus, regardless of 
whether some cases of suspected COVID-19 are missing 
from our data, the identified clusters are valid. In 
addition, any missing data that occurred at random 
would bias the findings toward the null hypothesis of 
complete spatial randomness, but could not account for 
the detection of a spurious cluster. 
 
In the current version of the manuscript, this issue is 
addressed in the limitations:  
 
Secondly, factors beyond the scope and scale of this 
research may affect ambulance use. People within close 
proximity to hospitals with A&E services are more likely 
to access those services directly rather than calling an 
ambulance. Similarly, willingness to call an ambulance 
may vary between communities. Poor health literacy, 
including ability to recognize symptoms of illness, is 
often associated with deprivation (Niksic et al., 2015). 
Thus, qualitative community scale research is needed to 
ground truth the trends and associations reported here. 
 
We have added the following:  
 

Section 6.5 



As a result, it is likely that our data does not represent all 
severe cases of suspected COVID-19 in the study region. 
 

overall, I think you can tighten up the 
"scientific" parts of the analysis and identify 
the core weaknesses along this angle, but 
then emphasize how the method can be 
useful and open up new modes of action that 
might be low-impact and easily implemented. 
On this latter point, there is a forthcoming 
article in Journal of the American Planning 
Association (Spencer, Marasco, and Eichinger) 
titled: "Planning for Emerging Infectious 
Disease Pandemics: Upstream Causes and 
Proportional Responses during the case of 
Avian Influenza 2004-2005.," that identifies 
the pressing need to find a range of politically 
palatable policy options for controlling 
pandemics that go beyond vaccination. This is 
something you might use to suggest why 
understanding clusters in real time is 
important. 

Thank you. We like the idea of providing more specific 
recommendations for potentially ‘politically palatable 
policy options’. Unfortunately, we are unable to access 
the suggested forthcoming publication as it is not yet 
publicly available. In the original manuscript there was a 
focus on identifying regions for localised lockdowns and 
more targeted intervention. We removed much of this 
content in response to the previous reviews which 
suggested not to focus on transmission.  
 
The current manuscript refers to implications for more 
targeted policies for social distancing in the conclusion. 
In the revision, we have reintroduced further detail in 
the conclusion about how policy makers might apply our 
methodology to inform localised mitigation measures. 
 
Specifically, we emphasise the possibility of utilising our 
findings for early localised lockdowns, as well as longer-
term approaches to reducing vulnerability, such as some 
options for promoting health behaviours in deprived 
communities and increasing access to health services in 
isolated communities.  
 

Section 7 

Your core argument is that real-time 
assessment of unusual clusters can suggest 
place-based interventions that few public 
health and medical officials might even think 
of, let alone have any tentative data to 
support action/intervention. Spencer et.al 
(2020) in Landscape and Urban Planning has 
some similar types of recommendations 
regarding geographically targeted 
surveillance related to the household built 
environment. 

Our core argument is that real-time analysis can offer 
more targeted and timely intervention. We also reflect 
on some possible nuances that could be made to 
existing mitigation policies (see below). Underlying 
susceptibility, as well as exposure, are factors in severe 
illness. Underlying susceptibility is partly the product of 
long-term individual choices, behaviours etc. This 
component of vulnerability cannot be addressed as a 
pandemic unfolds. Rather, communities who are 
vulnerable in this way can be targeted for better support 
earlier on.   
 
Spencer et al. (2020) highlight problems with developing 
urban areas, such as inadequate water and waste 
removal infrastructure, that are common to developing 
countries. Sanitation is a huge factor in exposure in 
poorer regions.  
 
There are some opportunities for novel interventions 
informed by our analysis, such as our suggestion about 
monitoring green space use below. However, many of 
the factors known to influence illness severity are 
related to underlying susceptibility and individual health 
behaviours, which in turn are related to systemic issues 
like deprivation, education, and systemic inequality. Our 

Section 6.2, 
Section 7, 
Section 6.4 



findings emphasise the need of the UK Government to 
‘level up health’, rather than specific new interventions 
that can prevent severe illness from occurring in 
vulnerable communities and regions.  
 
Following the advice of the Guest Editor, in our revised 
manuscript we include some additional reflections and 
recommendations for mitigating the impact of systemic 
inequalities on vulnerable communities during a 
pandemic. Specifically, we have included the following:  
 
Our findings about vulnerability in rural areas suggest 
some policy responses for future pandemics and phases 
of lockdown. News reporting during the first national 
phase of lockdown suggests that the public viewed rural 
areas as less vulnerable to contagion and mortality 
related to COVID-19 compared to urban areas (e.g., 
McCarthy, 2020).Further, rural communities reported 
the phenomenon of people from urban and peri-urban 
areas ‘flocking’ to rural regions for recreation during 
phases of lockdown when only essential travel was 
legally permitted (Asquith, 2020). In the event of future 
phases of lockdown, mitigating high rates of severe 
illness in rural areas with aging populations may require 
more stringent policing of travel between urban and 
rural areas. (Section 6.4) 
 
 
It is possible that proximity to Passive Green Space 
reflects social behaviour during the pandemic. In a 
perspective piece published in this Special Edition we 
examine the relationship between landscape features 
and the implications for COVID-19 exposure and 
underlying susceptibility in more depth. During extended 
phases of lockdown parks and arboretums became social 
hubs that were poorly monitored by local authorities. 
News reports documented continual violations of social 
distancing rules in public spaces like beaches and 
common green areas. Thus, improving the monitoring 
and enforcement of social distancing in these spaces 
may be a future avenue for reducing rates of severe 
COVID-19. (Section 6.2) 
 

 Identifying vulnerable communities in real-time 
could inform earlier localised lockdowns to 
mitigate transmission and reduce rates of severe 
illness. Targeting areas where contagion is likely 
to result in high rates of hospitalisation would 
also reduce burden on emergency medical 
services;  



 Opportunities for mitigating transmission also 
include more effective monitoring and 
enforcement of social distancing rules in Passive 
Green Space, including parks, commons and 
arboretums; 

 The dynamics of vulnerability vary between 
urban centres and more peripheral or rural 
regions, and between more deprived compared 
to more affluent communities. The opportunities 
for minimising the impacts of a pandemic 
include reducing the underlying susceptibility of 
communities as well as minimising transmission. 
In part, this involves urban planning to enhance 
opportunities for health behaviours. Improving 
the safety of green spaces for cost-free exercise 
and increasing infrastructural and financial 
access to healthy food would promote healthier 
lifestyles in deprived communities. Further, 
improving access to health services in more 
affluent and isolated communities may help to 
mitigate the most severe outcomes of a 
pandemic. However, in both cases this requires 
top-down financial investment to encourage 
healthy retail outlets to locate in deprived 
neighbourhoods, and health services to locate in 
low-density neighbourhoods.   

(Section 7) 

We hope that these additions address the concerns of 
the Guest Editor.  

Reviewer One 

One of the previous recommendations was to 
better explain the relationship between 
communicable, infectious diseases and the 
urban form (population density, housing 
crowdedness, etc.). The authors have not 
explicitly explained this relationship. There is 
plenty of public health literature that explores 
this relationship, especially related to 
respiratory (i.e. Tuberculosis) and diarrheal 
diseases. With COVID being an infectious, 
communicable respiratory disease, the 
relationship between urban/community 
characteristics and communicable diseases 
need to be explicitly explained. 

Section 2 (Conceptualising the relationship between 
severe suspected COVID-19 cases and built 
environments) considers the relationship between 
features of built environments and severe illness form 
infectious disease, including the following:  
 
In the case of COVID-19, the relationship between severe 
illness and characteristics of the built environment 
involves both direct and indirect pathways. On the one 
hand, environments can influence the direct exposure of 
individuals to communicable disease. On the other hand, 
landscape features can indirectly affect the underlying 
susceptibility of communities to severe symptoms, 
compared to experiencing mild symptoms or presenting 
as asymptomatic, by supporting or preventing healthy 
lifestyles. Features of neighbourhoods that can influence 
health behaviours like exercise include access to green 
space for passive recreation such as walking, and 
facilities for active exercise, such as sports grounds or 

Section 1 



leisure centres (Hartig et al., 2020). Further distance 
from these healthy landscape features is associated with 
lower levels of activity and higher risk of cardiovascular 
disease (Shen & Lung, 2016) and obesity (Lachowycz & 
Jones, 2011). However, landscape features can also 
reflect the social characteristics of wider living 
environments; high crime rates co-occur with poor 
physical infrastructure like housing in deprived 
communities. Crime can deter access to nearby outdoor 
spaces (Gomez et al., 2004) while poor housing indicates 
lower incomes and a greater likelihood of underlying 
chronic health conditions (Krieger & Higgins, 2002).  
 
The focus of our manuscript is not exclusively urban 
landscapes and the transmission of infectious disease; 
we focus specifically on urban landscapes and severe 
illness from infectious disease. The fact that COVID-19 is 
communicable is only one component of severity.  
 
However, we have added a statement to the 
introduction to make the relationship between urban 
space and infectious disease explicit:  
 
Characteristics of urban landscapes that are typically 
associated with the transmission of infectious diseases 
include population and employment density (Hu et al., 
2013), and housing crowdedness (Low et al., 2013; 
Neiderud et al., 2015). However, these relationships are 
rapidly changing and vary depending on region and 
specific location within urban areas. For example, 
extended urbanisation is shifting the dynamics of 
vulnerability; in some cases, communities on urban 
peripheries may be more vulnerable than those in denser 
urban centres with greater access to healthcare and 
social support (Connolly et al., 2021). Indeed, in the case 
of COVID-19, typical relationships between urban space 
and infectious disease do not consistently explain 
mortality, with high rates of severe cases occurring in 
less dense urban areas (Frank & Wali, 2021). Thus, there 
is a need to consider how urban landscapes influence the 
underlying susceptibility of communities to severe illness 
as well as exposure to infectious diseases. 
 
(Section 1) 

The authors addressed the recommendation 
of including a framework to justify the 
selection of variables in the study. However, 
the authors' application of the 
Bronfenbrenner's conceptual models focus on 
the social contexts, not necessarily on the 
social and environmental contexts. The 

McLeroy et al (1988) do not address physical 
environmental factors. The research (An ecological 
perspective on health promotion programs) refers 
exclusively to ‘social environmental factors’ including 
the following: intrapersonal factors (e.g., knowledge, 
skills), interpersonal processes (e.g., social networks), 
institutional factors (e.g., organisational arrangements), 

N/A 



McLeroy et al (1988) offers a socio-ecological 
framework that addresses the environmental 
context that influences health.  
 

community factors (e.g., relationships between 
organisations), and public policy. There is no mention of 
the physical environment.  
 
The use of the term ‘environment’ in socio-ecological 
modelling typically refers to ‘wider social context’ rather 
than the physical environment. Our adaption of 
Bronfenbrenner’s model introduces elements of the 
physical environment. This is a novel adaptation of the 
model. 

The introduction mentioned the risk of severe 
COVID cases vary by ethnicity, however the 
study does not include the racial/ethnic 
makeup of communities, specifically in the 
clusters. Also, are racial/ethnic data collected 
from 999 responses? 

Ethnicity is mentioned as an example of demographic 
characteristics. We are clear in the manuscript that we 
are unable to include ethnicity in our analysis. Section 
3.3 states:  
 
While ethnicity is also commonly associated with severe 
symptoms (Sze et al., 2020), reliable data was 
unavailable in real-time. 

N/A 

In the data collection section, it is unclear if 
the 999 data are geocoded by address then 
aggregated by postal code, or if the data were 
only aggregated by postal code. 

Section 3.4 states:  
 
The database of suspected COVID-19 cases was obtained 
from EMAS1, including the date 999 calls were received, 
partial postcodes of ambulance attendance locations, 
sex, and age. 
 
We have made this adjustment to be clearer:  
 
The database of suspected COVID-19 cases was obtained 
from EMAS2, including the date 999 calls were received, 
partial postcodes (rather than full addresses) of 
ambulance attendance locations, sex, and age. 

Section 3.4  

The author used the term "suspected COVID" 
cases and "suspected severe COVID" cases. 
How is "severe" defined? 

We have added this clarifying statement to Section 1:  
 
In this context, ‘severe illness’ refers to patients 
presenting with severe symptoms that require the 
attendance of emergency medical services. 

Section 1 

When using the SatScan, can you control for 
size in determining cluster area? What is the 
window area compared to the study area? I 
recommend describing the clusters in terms 
of size relative to the community with 
incidence rates. 

Section 3.5.1 specifies:  
 
The Poisson Model was purely spatial. The model 
parameters included unconstrained spatial cluster size, 
and the criteria for reporting hierarchical clusters was 
set to ‘no cluster centres in other clusters’.  
 
This approach is preferable to setting a specific cluster 
size because the size of the cluster is empirically 
determined from the data.  
 

N/A 

                                                           
1 This research, including use of patient data for statistical and spatial analysis, was approved by the NHS 
Health Research Authority, IRAS ID: 264573.  
 



Table 2 describes the clusters relative to population size 
and includes relative risk which is the same as incidence 
rate. 
 

In line 207 page 6, "ethnicity is also 
commonly associated with severe 
symptoms". What ethnic groups are you 
referring to?  

Ethnicity refers to the ethnicity of the individual, not to a 
specific ethnic group. All ethnicity is associated with 
severe symptoms. ‘Associated’ means ‘less likely’ as well 
as ‘more likely’. Some ethnic groups are more/less likely 
to experience severe symptoms. The variable ‘ethnicity’ 
is related to severity.  

N/A 

There are several typos throughout the 
document. Different Font size on p. 2 line 76. 
What is GDPR (in line p. 2 line 84)? Lines 253-
254 needs clarity. Line 311- Both needs a 
lowercase b. Line 314- raster's and polygons. 
Figure 3, please list what the values mean for 
each cluster? This is explained later, but 
needs to be explained earlier. Line 13 page 
12- AHAHI? There are more typos further in 
the document. 

Thank you for picking up these errors. We have made 
most of the suggested changes.  
 
We are unsure what values the reviewer suggests 
including in Figure 3. The figure is intended to show 
location rather than the characteristics of each cluster 
which is detailed elsewhere. There are no visible 
indictors of these characteristics in the figure.  
 
We are unsure what the error is regarding AHAHI. We 
have introduced the Index earlier, using the acronym in 
the remainder of the document is appropriate.  
 
We have thoroughly checked the remainder of the 
document for typos and made numerous changes.  

Throughout 

The use of acronyms and spelling these out 
are inconsistent throughout the document.  

The study involves numerous acronyms. We have 
attempted to remind the reader of the meaning of long 
acronyms (such as AHAHI) at appropriate points in the 
manuscript. We have added the acronym after every full 
use. Full titles are acronyms are now included in each 
figure caption.  

Throughout 

The first 3 sections need better organization Reviewer Two and the Guest Editor have not raised this 
as an issue.  

N/A 

Reviewer Two 

Thank you for submitting your revised 
manuscript, which is better organized and 
describes more clearly the method and 
caveats of the study. 

Thank you.  N/A 

Unfortunately I am still struggling to match 
the claims of the paper ("these analyses offer 
a real-time approach for identifying and 
protecting vulnerable communities in the 
critical early stages between the first 
confirmed case of a new EID and widespread 
community testing") and the strength of the 
model itself. The model predicts less than 
42% of cases in "unusual clusters," and the 
unusual clusters themselves tell very different 
stories. The authors conclude that "Taken 
together, these observations suggest that the 
relative contribution of demographic, socio-

Please see responses to the Guest Editor above.  
 
Regarding contribution, our analysis elucidates complex 
relationships; the factors that may explain vulnerability 
vary spatially. Deprivation is important in some contexts 
and less important in others. By comparing clusters in 
rural/urban and inland/coaster locations, our findings go 
beyond identifying individual determinants, and instead 
speak to the geographic surroundings of communities. 
For example, urban epidemiology research tends to 
suggest that high density urban areas are most at risk of 
infectious diseases. Our analysis suggests that the 
relationship between population and severe illness is 

N/A 



economic, and environmental factors to 
vulnerability varies depending on wider 
geographic location." I am struggling to see 
how these findings advance the original claim 
of being able to "identify and protect 
vulnerable communities." The model results 
do not tell a particularly clear story (see Table 
6), nor seem to advance urban plannings' 
understanding of pandemic contagion beyond 
a general and uncontroversial finding that 
physical AND social factors matter. The 
interpretation of findings from the 
perspective of urban and regional planning or 
urban spatial theory is weak, presenting the 
results of the model list-wise but not 
providing much meaningful interpretation or 
generalization. 
 

more complex; landscapes interact with people in 
multiple ways, influencing their underlying health as 
well as their exposure to disease. Together these factors 
influence whether or not a virus like COVID-19 will result 
in severe illness requiring costly emergency services.   

Returning to the central claim of the paper, I 
am struggling to see how a public health 
professional would use these findings to 
meaningfully improve surveillance of a fast-
moving pandemic - given the low power of 
the model and highly site- and context-
specific nature of the findings. 
 

See response to the Guest Editor above.  N/A 
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An exploration of factors characterising unusual spatial clusters of COVID-19 1 

cases in the East Midlands region, UK: a geospatial analysis of ambulance 999 2 

data. 3 

 4 

Abstract: 5 

Complex interactions between physical landscapes and social factors increase vulnerability to 6 

emerging infections and their sequelae. Relative vulnerability to severe illness and/or death (VSID) 7 

depends on risk and extent of exposure to a virus and underlying health susceptibility. Identifying 8 

vulnerable communities and the regions they inhabit in real time is essential for effective rapid 9 

response to a new pandemic, such as COVID-19. In the period between first confirmed cases and the 10 

introduction of widespread community testing, ambulance records of suspected severe illness from 11 

COVID-19 could be used to identify vulnerable communities and regions and rapidly appraise factors 12 

that may explain VSID. We analyse the spatial distribution of more than 10,000 suspected severe 13 

COVID-19 cases using records of provisional diagnoses made by trained paramedics attending 14 

medical emergencies. We identify 13 clusters of severe illness likely related to COVID-19 occurring in 15 

the East Midlands of the UK and present an in-depth analysis of those clusters, including urban and 16 

rural dynamics, the physical characteristics of landscapes, and socio-economic conditions. Our 17 

findings suggest that the dynamics of VSID vary depending on wider geographic location. Vulnerable 18 

communities and regions occur in more deprived urban centres as well as more affluent peri-urban 19 

and rural areas. This methodology could contribute to the development of a rapid national response 20 

to support vulnerable communities during emerging pandemics in real time to save lives. 21 

 22 

1. Introduction: 23 

There is growing recognition in the fields of epidemiology (Lofus, 2004; Miller et al., 2012; Norris et 24 

al., 2020; Viegi et al., 2006), and urban planning (Durand et al., 2010; Northridge et al., 2003; Seo et 25 

al., 2019; Spence et al., 2020) that complex interactions between physical landscapes and social 26 

factors drive vulnerability to contagion and severe illness, and thus, understanding these 27 

mechanisms should be the focus of disease prevention and management. Urban landscapes can 28 

simultaneously influence chronic conditions associated with susceptibility to severe pathogenic 29 

illness, such as obesity by facilitating access to fast food vendors (Daras et al., 2018), and increase 30 

exposure to disease through high density urbanism (Goryakin et al., 2017; Wu et al., 2016). 31 

On March 11th, 2020 the World Health Organization declared the novel coronavirus disease 2019 32 

(COVID-19) a global pandemic. Over the subsequent months, the research community has prioritised 33 

understanding contagion and transmission pathways (Park et al., 2020) as well as identifying and 34 

supporting vulnerable communities and regions (Daras et al., 2021; Khalatbari-Soltani et al., 2020; 35 

Patel et al., 2020). Vulnerable communities include those with pre-existing chronic conditions that 36 

are known to increase susceptibility to severe COVID-19 illness, such as diabetes (Peric & Stulnig, 37 

2020) and overweight or obesity (Steinberg et al., 2020). Medical and public health research has led 38 

to widespread appreciation that the impact of the pandemic has, and continues to be, 39 

heterogenous; some communities and regions appear to be more vulnerable to severe illness than 40 

others (Marmot et al., 2020; Patel et al., 2020).  41 

Manuscript (without Author Details) Click here to view linked References
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One common observation is that urban and peri-urban areas tend to be sites of high rates of 42 

infection and mortality compared to more dispersed rural areas (Stier et al., 2020). High rates of 43 

infection suggest that urban landscapes are more exposed to transmission, and, given that many 44 

cases of infection are asymptomatic or involve very mild symptoms (Kim et al., 2020), high rates of 45 

mortality may indicate that communities within those landscapes are also more susceptible to 46 

severe illness (Guilmoto et al., 2020). Characteristics of urban landscapes that are typically 47 

associated with the transmission of infectious diseases include population and employment density 48 

(Hu et al., 2013), and housing crowdedness (Low et al., 2013; Neiderud et al., 2015). However, these 49 

relationships are rapidly changing and vary depending on region and specific location within urban 50 

areas. For example, ‘extended urbanisation’ is shifting the dynamics of vulnerability; in some cases, 51 

communities on urban peripheries may be more vulnerable than those in denser urban centres with 52 

greater access to healthcare and social support (Connolly et al., 2021). Indeed, in the case of COVID-53 

19, typical relationships between urban space and infectious disease do not consistently explain 54 

mortality, with high rates of severe cases occurring in less dense urban areas (Frank & Wali, 2021). 55 

Thus, there is a need to consider how urban landscapes influence the underlying susceptibility of 56 

communities to severe illness as well as exposure to infectious diseases. 57 

Surprisingly, of more than 40,000 papers using clinical diagnoses of COVID-19 published in 2020, 58 

fewer than 150 have considered the implications for urban planning, and those that do tend to focus 59 

on the impact that ‘lockdown’ has had on urban landscapes, such as pollutant rates, rather than the 60 

impact of urban landscapes on health outcomes (Sharif & Khavarian-Garmsir, 2020). In this study, we 61 

consider the relationship between built environments, exposure to emerging infectious diseases 62 

(EIDs), and susceptibility to severe COVID-19 illness provisionally diagnosed by medically trained 63 

professionals. In this context, ‘severe illness’ refers to patients presenting with severe symptoms 64 

that require the attendance of emergency medical services. 65 

Efforts to shield the most vulnerable communities and regions in society are more likely to be 66 

effective if they happen rapidly and in real-time (Kasda et al., 2020). Compared to other common 67 

disasters like flooding, obtaining geographically accurate data to evaluate the spatial dimensions of a 68 

pandemic, and to support vulnerable communities and regions, faces unique challenges. In the UK, 69 

the use of contact tracing and testing to identify community cases of COVID-19 commenced after 70 

the first confirmed case on January 31st, 2020. However, community testing ceased in early March as 71 

cases rose rapidly and the virus was classified as a category 3 pathogen, confining testing to level 3 72 

laboratories. On April 2nd the UK government outlined a five-pillar strategy for expanding testing 73 

capacity including the introduction of community testing in early May, with laboratory capacity 74 

expanding rapidly over the next two months (The Health Foundation, 2020).  75 

In the interim before laboratory capacity increased, identification of severe illness and vulnerable 76 

communities was based on individual’s self-reporting of symptoms, such as via the NHS Test and 77 

Trace App, and the clinical judgement of medical professionals. Routine medical data collected 78 

within the first hour of emergency department (ED) admittance for severe illness has since been 79 

demonstrated to predict positive COVID-19 cases with a high degree of accuracy, including self-80 

reported olfactory and taste dysfunction (OTD) (Wee, 2020; Patterson, 2020; Printza & 81 

Constantinidis, 2020) and blood oxygen levels (Soltan et al., 2021). These measures, guided by Public 82 

Health England’s case definition symptom criteria (PHE, 2020) are also used by paramedic clinicians 83 

attending ambulance call outs for suspected COVID-19 cases.  84 

Our research involves analysing records of provisional diagnoses of COVID-19 made by trained 85 

paramedics attending medical emergencies in the East Midlands of the UK. In S-1 we present a 86 

preliminary analysis comparing daily rates of suspected severe COVID-19 cases from our data set 87 
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obtained from the East Midlands Ambulance NHS Trust (EMAS) to retrospective records of daily 88 

rates of cases confirmed by  polymerase chain reaction (PCR) testing for the same region. The results 89 

indicate a very strong correlation between daily rates of suspected severe cases and confirmed cases 90 

for the East Midlands region for the period examined in the current research, r=.96, p<.01, N=71. 91 

This is unsurprising given that testing in this early phase of the pandemic was largely confined to 92 

cases of severe illness, such as those patients conveyed by ambulances. Thus, ambulance records 93 

may be a reliable measure of severe COVID-19 related illness in real-time. To our knowledge, 94 

ambulance data have not previously been utilised to identify communities and regions that may be 95 

vulnerable to severe illness from COVID-19 or to investigate the social and environmental factors 96 

that may influence vulnerability. Our novel methodology presents an opportunity for health 97 

professionals to identify and support vulnerable communities who are likely to experience severe 98 

illness from a new virus in the early phase of a pandemic.  99 

Ambulance records of provisional diagnosis hold several important advantages over hospital 100 

admittance records and laboratory records of confirmed cases for identifying vulnerable 101 

communities affected by severe illness. Hospitals and laboratories are required under General Data 102 

Protection Regulation (GDPR) to aggregate patient information for reporting. Others have explored 103 

socio-economic predictors of aggregate confirmed cases in the UK at less granular scales (eg., Daras 104 

et al., 2021). However, without costly and time-consuming data linkage via NHS Digital, aggregated 105 

patient data does not allow for meaningful analysis of spatial patterns or characteristics of physical 106 

and social environments that explain geographical trends of severe illness. Ambulance data, 107 

including postcode region1, allows a more granular analysis of factors that predict severe illness from 108 

COVID-19 infection in real-time.  109 

Our study presents a novel methodology for identifying communities and regions that are vulnerable 110 

to severe illness during the early phase of a pandemic before laboratory testing is widespread. This 111 

involves considering both risk of exposure to a contagious disease as well as underlying susceptibility 112 

to severe illness. We identify unusual clusters of provisionally diagnosed severe COVID-19 cases in 113 

real-time using medical data collated by EMAS. Provisional diagnosis of suspected COVID-19 is 114 

determined by paramedics based on observed signs, such as patient acuity, self-reported symptoms, 115 

such as OTD, and objective medical measures, such as blood oxygen levels. Our analysis explores the 116 

characteristics of communities and regions within built environments where unusual clusters occur, 117 

including landscape features and socio-economic dynamics. In this context, ‘unusual clusters’ refers 118 

to high numbers of cases occurring within spatial proximity that are unlikely to have occurred by 119 

chance. Taken together, these analyses offer a real-time approach for identifying and protecting 120 

vulnerable communities in the critical early stages between the first confirmed case of a new EID 121 

and widespread community testing, as well as for identifying the characteristics of those 122 

communities most affected by severe illness over the course of a pandemic.  123 

2. Conceptualising the relationship between severe suspected COVID-19 cases and built 124 

environments:  125 

Theories about individual health and wider environments emerged in the 1980s as a critical response 126 

to medical and epidemiological paradigms; traditional medical models conceptualise health in terms 127 

of the presence or absence of biological disease, and the outcome of exposures that occur entirely 128 

at the level of the individual (Barbour, 1997). More contemporary ‘social’ perspectives suggest that 129 

health transcends the individual and recognize the important role that social networks (Smith & 130 

                                                           
1 UK Postcodes include two components, for example LN6 7TS. Region postcodes include the first component 
and the first letter of the second component; LN6 7.  
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Christakis, 2008) and wider social environments, including deprivation, play in health outcomes 131 

(Marmot, 1998).  132 

Efforts to consider interactions between individual or biological factors and social factors often draw 133 

on Bronfenbrenner’s bioecological theories (Eriksson et al., 2018), including his original Ecological 134 

Social Model, as well as the more recent Process-Person-Context-Time model (Rosa & Tudge, 2013). 135 

These frameworks advanced the field of public health by introducing a way to conceptualise the 136 

multi-level social interactions that influence health and wellbeing. Bronfenbrenner’s models divide 137 

the social world of an individual into four ‘systems’; the Microsystem, including the most immediate 138 

elements of the social world, such as family, the Mesosystem, including extended social networks, 139 

the Exosystem, including wider community services, and the Macrosystem including commonly 140 

shared cultural and social beliefs and values (Bronfenbrenner, 1979).  141 

While progressive, bioecological theories focus almost exclusively on the social world and social 142 

vulnerabilities and rarely consider landscape features that are also understood to influence health 143 

outcomes (Campbell & Wiesen, 2009; Cervero & Duncan, 2003; Williams, 2016). In contrast, in the 144 

field of urban planning, vulnerability is often conceptualised in relation to hazards and risks in the 145 

landscape, such as exposure to direct communicable disease, as well as more distal relationships, or 146 

‘teleconnections’ (Seto et al., 2012) between landscape features, like access to green space (De Vries 147 

et al., 2003; Markevych et al., 2017) and underlying health conditions, such as obesity (Daras et al., 148 

2018). Importantly, exposure to a virus does not necessarily precipitate a medical emergency, 149 

rather, severe symptoms requiring emergency medical attention reflect the cumulative effect of 150 

exposure and underlying susceptibility. Thus, vulnerability is multifaceted, incorporating 151 

components of the physical landscape and components of the social world. While both bioecological 152 

and urban risk theories have advanced ways of thinking about health outcomes and pathways of 153 

vulnerability, a holistic approach is needed that considers the range of factors in built environments 154 

that precipitate severe illness and death from COVID-19.  155 

In the case of COVID-19, the relationship between severe illness and characteristics of the built 156 

environment involves both direct and indirect pathways. On the one hand, environments can 157 

influence the direct exposure of individuals to communicable disease. On the other hand, landscape 158 

features can indirectly affect the underlying susceptibility of communities to severe symptoms, 159 

compared to experiencing mild symptoms or presenting as asymptomatic, by supporting or 160 

preventing healthy lifestyles. Features of neighbourhoods that can influence health behaviours like 161 

exercise include access to green space for passive recreation such as walking, and facilities for active 162 

exercise, such as sports grounds or leisure centres (Hartig et al., 2020). Further distance from these 163 

healthy landscape features is associated with lower levels of activity and higher risk of cardiovascular 164 

disease (Shen & Lung, 2016) and obesity (Lachowycz & Jones, 2011). However, landscape features 165 

can also reflect the social characteristics of wider living environments; high crime rates co-occur with 166 

poor physical infrastructure like housing in deprived communities. Crime can deter access to nearby 167 

outdoor spaces (Gomez et al., 2004) while poor housing indicates lower incomes and a greater 168 

likelihood of underlying chronic health conditions (Krieger & Higgins, 2002).  169 

While deprivation broadly is associated with susceptibility to severe illness, the socio-economic 170 

characteristics of patients with severe symptoms of COVID-19 have often been overlooked. Thus, 171 

Khalatbari-Soltani et al (2020) call for the systematic recording of these dynamics for identifying 172 

vulnerable groups in the early stages of a pandemic. Patel et al (2020) suggest that deprivation is 173 

likely to be associated with increased VSID from COVID-19 in three ways. Firstly, more deprived 174 

neighbourhoods often experience overcrowding which results in increased risk of infection 175 

compared to less densely populated areas. Secondly, poorer people are more likely to be employed 176 
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in roles without opportunities to work from home which also increases risk of exposure. Finally, 177 

poverty is a risk factor for chronic comorbidities that in turn predict severe illness and hospitalisation 178 

from COVID-19, such as cardiovascular disease (Mehra et al., 2020), diabetes (Peric & Stulnig, 2020) 179 

and obesity (Steinberg et al., 2020). 180 

Others have investigated the relationship between severe COVID-19 related illness and individual 181 

features of social worlds, such as deprivation (e.g., Patel et al., 2020) and physical landscapes, such 182 

as air pollution (Travaglio et al., 2021). We consider the cumulative impact of factors across 183 

demographic, socio-economic and environmental domains to explore the characteristics of 184 

vulnerable communities (Kiaghandi et al., 2020) identified spatially by unusual clusters. This 185 

approach resounds well with the underlying philosophy of bioecological modelling; health outcomes 186 

are the culmination of interactions between and within domains that make up the built 187 

environment, and across individual and neighbourhood scales. Thus, in addition to social 188 

interactions, we include features of physical landscapes in our analysis to consider vulnerability 189 

across scales in Bronfenbrenner’s socio-ecological landscape.  190 

3. Methods: 191 

3.1 Site and location 192 

The East Midlands is located in the Central Eastern part of England and spans an area of 15,627km2 193 

(Figure 2). The estimated total population of the region is 4.8 million including the most populous 194 

urban areas of Derby, Leicester, Lincoln, Northampton and Nottingham (ONS, 2020a). The 195 

proportion of the population identifying as other than ‘White UK’ in the East Midlands is low (14.6%) 196 

compared to the national average (20.2%) (ONS, 2020b), although some regions, including Leicester, 197 

have a much higher proportion of non-white population. In 2016, 18.5% of people in the region lived 198 

in the most deprived quintile (Public Health England, 2018). Nottingham, Derby and Leicester are the 199 

economic core of this region, with around 48% of businesses, and 50% of the population located in 200 

these cities (European Commission, 2020). The East Midlands is also the 3rd most rural region in 201 

England (European Commission, 2020). 202 
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 203 

 204 

3.2 Research aims and questions 205 

The first aim of the research was to identify unusual clusters of suspected COVID-19 cases in the East 206 

Midlands of the UK using more than 10,000 records of provisional diagnoses for severe COVID-19 207 

collated by EMAS during the first ‘wave’ of the pandemic between March 2nd and May 11th 208 

(Kontopantelis et al., 2021). This was achieved using a Kuldorff spatial scan statistic implemented in 209 

the geospatial software SatScanTM which compares the actual distribution of cases to the predicted 210 

distribution based on population density. The null hypothesis tested is that cases are randomly 211 

distributed rather than occurring in unusual clusters. The second aim of the research was to explore 212 

factors that predict cluster membership. This analysis involved computing a binary logistic regression 213 

with variables including measures of patient demographics, deprivation, and landscape features 214 

(Section 3.3). The third aim was to elucidate the individual characteristics of each unusual COVID-19 215 

cluster, using geospatial analysis and mapping to determine the strongest predictors of cluster 216 

membership. 217 

3.3 Measures 218 

Table 1 summarizes the datasets and measures included in the research. Data collated by and 219 

obtained from EMAS includes provisional diagnoses of suspected COVID-19 by medically trained 220 

clinicians, age, and sex. More severe COVID-19 symptoms tend to be associated with older age 221 

(Romero et al., 2020), and mortality is nearly twice as high in males compared to females (Ortolan et 222 

al., 2020). While ethnicity is also commonly associated with severe symptoms (Sze et al., 2020), 223 

reliable data was unavailable in real-time. The diagnostic algorithm employed by medically trained 224 

clinicians is guided by Public Health England’s case definition criteria (PHE, 2020), including 225 

observations of illness, self-reported symptoms like OTD, and objective medical measures like blood 226 

oxygen levels.  227 

Figure 1. Map of the UK highlighting the East 

Midlands region, including the locations of 

prominent towns and cities. 
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The Index of Multiple Deprivation (IMD) is an aggregate measure of socio-economic indictors. Low 228 

scores indicate greater deprivation while higher scores indicate greater affluence. Decile values of 229 

IMD were used for both spatial and statistical analysis. The Access to Healthy Assets and Hazardous 230 

Index (AHAHI) includes neighbourhood measures of physical landscape features, such as distance 231 

(km) from medical services and retail outlets, as well as environmental measures of air pollution 232 

which are often associated with built-up areas like dense housing, transport infrastructure and 233 

power stations (Beevers et al., 2012; Pannullo et al., 2017). The AHAHI is a validated metric that 234 

synthesises features of built environments that are commonly related to health outcomes in the 235 

wider health literature (Green et al., 2018). 236 

According to Daras et al. (2019) healthy features of landscapes associated with more positive health 237 

outcomes include closer proximity to active and passive green space as well as health services, such 238 

as general practitioners and emergency departments. This is because physical access to health 239 

services is associated with health service use and health maintenance. Thus, we might expect to 240 

observe lower rates of suspected severe COVID-19 located nearer to the health services and healthy 241 

features of physical environments included in our analysis, such as green and blue spaces (Table 1).  242 

Hazardous features of landscapes associated with poorer health outcomes include poor air quality, 243 

further distance from healthy features of landscapes, and closer proximity to retail vendors like fast 244 

food outlets, tobacconists, off-license stores, pubs, bars, and clubs. This is because distance from 245 

hazardous retail environments is a proxy measure for individual behaviour; people who live closer to 246 

fast food outlets are more likely to consume fast food, and subsequently to experience underlying 247 

health conditions like diabetes and obesity (Green et al., 2018). On this basis, we could anticipate 248 

that unusual clusters of suspected COVID-19 are likely to occur closer to retail vendors, further from 249 

health services and healthy physical environments, and in areas with poorer air quality. We chose to 250 

include individual measures of each of these landscape features rather than the final aggregate 251 

AHAHI scores in order to examine the effect of specific landscape scale environmental variables on 252 

COVID-19 clusters.  253 

Raw data for AHAHI input domains (Daras et al., 2019) were used to compute the binary logistic 254 

regression analysis. Decile values were used for the purpose of geospatial analysis and mapping. 255 

Given that high mortality rates have been associated with urbanity compared to rurality (Stier et al., 256 

2020), we also included measures from the UK Rural and Urban Categories (RUC) scale to 257 

supplement our analysis of neighbourhood environments. 258 

Table 1. Datasets, measures and sources 259 

Dataset* Measure Source 

EMAS COVID-19 
2020 

Suspected cases of COVID-19 (March 2nd-May 11th), sex, age East Midlands Ambulance NHS 
Trust 

 
IMD 2019 

 
IMD Decile  

https://hub.arcgis.com/datasets/c
ommunities::lower-super-output-
area-lsoa-imd-2019-osgb1936 

 
RUC 2011 

 
Categorical scale 1 (most urban) to 10 (most rural)** 

https://hub.arcgis.com/datasets/o
ns::rural-urban-classification-2011-
of-lower-layer-super-output-areas-
in-england-and-wales 

 
 
 

AHAHI 2019 

Retail  
Environment 
(distance in km) 

Gambling, fast food, pubs/clubs/bars, off 
license, tobacconists 

 
 
 
https://data.cdrc.ac.uk/dataset/ac
cess-healthy-assets-hazards-ahah 

Health services 
(distance in km) 

GPs, A&E, dentists, pharmacies, leisure 
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Physical environment 
(distance in km)2 

Green Space (passive), Green Space 
(active), Blue Space 

Air pollution (levels)3 Nitrogen Dioxide, Particulate Matter, 
Sulphur Dioxide 

*all data scales at Lower Super Output Area 260 
**only 8 categories were present in the East Midlands dataset; provisional diagnoses of COVID-19 requiring 261 
ambulance attendance in the East Midlands were not recorded in Urban-Major Conurbations, Villages, and 262 
Small Town and Fringe areas.  263 

 264 

3.4 Data handling and cleaning 265 

The database of suspected COVID-19 cases was obtained from EMAS4, including the date 999 calls 266 

were received, partial postcodes (rather than full addresses) of ambulance attendance locations, 267 

sex, and age. In total, 10,438 records were received, however, 93 records were removed because 268 

they contained errors, were missing geospatial information, or were unable to link to postcode 269 

population. All records of suspected COVID-19 cases were successfully linked to IMD, AHAHI, and 270 

RUC values. Thus, the final dataset contained 10,345 geospatial points. Only call outs for 271 

provisionally diagnosed COVID-19 were included in the dataset.   272 

3.5 Statistical and spatial data analysis  273 

Data analysis was conducted in three steps. Step one involved identifying unusual clusters of 274 

suspected severe COVID-19 cases by using population data as a baseline for the expected 275 

distribution of cases. For this analysis data were represented at the postcode region scale. The 276 

output included the location of statistically significant clusters, and a binary dataset distinguishing all 277 

cases that fell within clusters from all cases that fell outside of clusters. Step two involved converting 278 

the postcode region data to Lower Super Output Area scale for the purpose of linking the COVID-19 279 

dataset with existing national datasets, including IMD, the AHAHI, and RUC. The output was a unique 280 

linked database combining clinical and landscape scale data. In step three, statistical analyses were 281 

conducted to identify demographic, socio-economic, and environmental factors that predicted 282 

cluster and non-cluster membership, and geospatial analysis was used to characterize each 283 

individual cluster.  284 

3.5.1 Identifying unusually high clusters of suspected COVID-19 cases 285 

We applied a Kulldorff spatial scan statistic (Discrete Poisson model) implemented in SatScanTM 286 

software version 9.6.1 to perform the spatial analysis scanning to detect unusual clusters of COVID-287 

19 cases across the surveillance area. A spatial scan statistic is a cluster detection test that detects 288 

the location of clusters and evaluates their statistical significance (Kulldorff et al., 2005; Kulldorff, 289 

1997). This was done by gradually scanning a window across the study area, noting the number of 290 

observed and expected observations, based on population (ONS, 2011b), inside the window at each 291 

location using a Discrete Poisson model. For any given position of the centre, the radius of the circle 292 

changes continuously so that it can take any value. For each circle, the spatial scan statistic 293 

calculates the likelihood of the observed number of cases occurring inside and outside of the circle. 294 

The circle with the maximum likelihood is the most likely cluster, and thus the least likely to have 295 

                                                           
2 Passive Green Space includes parks, gardens, golf courses, and allotments. Active Green Space includes 
sporting areas such as playing fields and tennis courts. 
3 PM, NO2 and SO2 measures are annual µg m-3, micrograms per cubic meter of air.  
4 This research, including use of patient data for statistical and spatial analysis, was approved by the NHS 
Health Research Authority, IRAS ID: 264573.  
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occurred by chance. This method tests the null hypothesis that cases are randomly distributed. 296 

Statistically significance suggests that unusual spatial clustering is unlikely to have occurred by 297 

chance. The isotopic circular scan method employed by the software has previously been validated 298 

for identifying clusters of other infectious disease, such as malaria (Coleman et al., 2009), HIV 299 

(Namosha et al., 2013; Tanser et al., 2017), tuberculosis (Smith et al., 2018), and various chronic 300 

diseases (Cuadros et al., 2019; Tomita et al., 2020).  301 

The Poisson Model was purely spatial. The model parameters included unconstrained spatial cluster 302 

size, and the criteria for reporting hierarchical clusters was set to ‘no cluster centres in other 303 

clusters’.  304 

3.5.2 Data conversion to LSOA and database compilation   305 

To compile the LSOA dataset, IMD, RUC and AHAHI scores were merged using the join tool in ArcGIS 306 

Pro 2.6.0. The join used Lower Super Output Area codes (LSOA11CD) as these identifiers are 307 

consistent between the EMAS COVID-19 database and the remaining datasets. These processes are 308 

visualised in Figure 2.  309 

 310 

Figure 2. Schematic of database compilation and spatial analysis including data joining, and data 311 

display as 2-D and 3-D maps using ArcGIS Pro 2.6.0. 312 

Geospatial analysis was also used to identify which cases fall into specific clusters compared to cases 313 

that are randomly distributed. In one instance, two clusters were found to overlap. However, for the 314 

purpose of characterizing clusters it was necessary to assign all cases to a single cluster. Thus, these 315 

cases (N = 54) were assigned to clusters based on their location from a centre line of intersection 316 

between the overlapping clusters. The output, a novel database, was used for regression analysis to 317 

identify factors that predict cluster membership (Section 5.2), and for geospatial analysis to produce 318 

maps representing teleconnections (Section 5.3).  319 
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3.5.3 Statistical analysis and spatial representation of significant clusters 320 

Binary logistic regression analysis was used to identify factors that predict whether individual cases 321 

of suspected severe COVID-19 occur in unusual clusters.  All measures reported in Table 3 and Table 322 

4 were included in the regression model. While the IMD was included in the binary regression, we 323 

also conducted an ANOVA to determine whether mean differences in deprivation and affluence 324 

occur between areas with clusters and areas characterized by random distribution. In the UK, 325 

deprivation is often associated with early transmission patterns (Balasegaram et al., 2012), and high 326 

rates of contagion (Rushton et al., 2007). Thus, it is possible that deprivation is a common 327 

denominator for all areas with suspected cases of COVID-19, rather than a distinguishing feature of 328 

cluster membership. ANOVA was computed to explore more nuanced spatial differences between 329 

each cluster, and areas with cases that do not occur in clusters. 330 

Regression output and cluster output from SatScanTM was used to display the relationship between 331 

determinants of clusters visually. The cluster output from SatScan™ was converted to a layer 332 

(‘cluster shapefile’) within ArcGIS Pro 2.6.0. Of 41 clusters identified, 13 were statistically significant 333 

(P < 0.05). All non-significant clusters were removed from the dataset. A polygon representing the 334 

East Midlands was extracted from the UK Counties 2017 shapefile (‘UK shapefile’) to create a 335 

background in ArcScene. Relative Risk values were assigned to each cluster within the cluster 336 

shapefile. Both the cluster shapefile and UK shapefile were converted to rasters and combined to 337 

create a unique raster displaying the Relative Risk of clusters in 3-D.  The unique raster was then 338 

converted to a TIN in order to be represented clearly in ArcScene. This step addressed a display 339 

problem due to the rasters and polygons merging and warping the slope of elevation in the image. 340 

Displaying clusters involved using a scale of graduated colours from green to red that were manually 341 

selected based off the spread of the data. 342 

 343 

4. Results: 344 

4.1 Identifying unusually high clusters of suspected severe COVID-19 cases 345 

SatScanTM  Poisson Modelling identified 13 statistically significant (P<.05) unusually high clusters of 346 

suspected COVID-19 cases, displayed in Figure 3. Per 100,000 population, the number of observed 347 

cases range from 951 West of Skegness to 3,417 East of Rugby. By comparison, the range of cases 348 

occurring per 100,000 outside of clusters was between 8 and 660. Figure 4 demonstrates the relative 349 

risk of each cluster, meaning the likelihood of contracting severe illness in an area compared to 350 

regions where cases are randomly distributed. The spatial characteristics of each cluster, including 351 

approximate location, radius, expected and observed number of cases, P-Values, specific relative risk 352 

ratios, and the number of cases in each cluster per 100,000 population are reported in Table 2. 353 

 354 

 355 

 356 

 357 

 358 
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Figure 3. The geographic location of 13 statistically significant (P<.05) clusters of COVID-19, 359 

identified using a Kulldorff spatial scan statistic. Further details of clusters are given in Table 2.  360 

 361 

Figure 4. Spatial representation of relative risk of suspected cases of COVID-19 in the East Midlands 362 

of the UK between March 2nd and May 11th 2020. Taller clusters, and clusters closer to red on the 363 

colour gradient reflect greater risk of contracting COVID-19. 364 

 365 
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Table 2. Spatial characteristics of unusual clusters of suspected COVID-19 cases presented in Map 1, extracted from SatScan output, including population, 

number of cases, expected cases, log likelihood, P-value, relative risk, cases per 100,000 population and approximate location of clusters. Population has 

been determined at the regional postcode scale.  

Cluster 
Radius  
(km) 

Population 
Number 
of Cases 

Expected 
Cases 

Log 
Likelihood 

Ratio Cases 
P – Value 

Relative 
Risk 

Cases per 
100,000 

population 
Location 

1 49.21 82,653 911 652.93 48.82 <0.00 1.43 1102 Nottingham 
2 20.67 14,120 210 111.55 34.88 <0.00 1.90 1487 Leicester 
3 2.78 32,220 379 254.53 27.19 <0.00 1.51 1176 Derby 
4 33.98 18,430 233 145.59 22.53 <0.00 1.61 1264 West Peak District 
5 .84 907 31 7.16 21.61 <0.00 4.34 3417 East of Rugby 
6 1.08 4,331 77 34.22 19.76 <0.00 2.26 1777 East Peak District 
7 9.92 3,690 65 29.15 16.34 <0.00 2.24 1761 West Grimsby 
8 42.15 87,897 836 694.36 14.60 0.00 1.22 951 West of Skegness 
9 11.16 9,235 121 72.96 13.29 0.00 1.67 1310 Southwest of Leicester 

10 1.17 1,543 32 12.19 11.10 0.00 2.63 2073 Southwest of Derby 
11 1.3 12,443 148 98.3 10.98 0.00 1.51 1189 Northampton 
12 4.99 5,285 74 41.75 10.15 0.01 1.78 1400 East Grimsby 
13 13.33 6,029 81 47.63 9.70 0.02 1.71 1343 North of Chesterfield 
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4.2 Factors that predict cases of COVID-19 falling into unusual clusters compared to randomly 1 

distributed cases 2 

 4.2.1 Descriptive statistics  3 

In total, 10,345 cases of suspected severe COVID-19 with sufficient information to include in analysis 4 

were reported and recorded by EMAS between March 2nd and May 11th, 2020. Of all cases, 1,123 5 

fell into unusual clusters compared to population, while the remaining 9,222 cases were distributed 6 

randomly. The mean (M) and standard deviation (SD) for measures of IMD and AHAHI included in 7 

our analysis are presented in Table 3. The proportion of cases in unusual clusters compared to 8 

randomly distributed by sex and RUC categories are presented in Table 4.  9 

Table 3. Descriptive statistics for measures of Index of Multiple Deprivation (IMD), Access to Healthy 10 

Assets and Hazardous Index (AHAHI) and age for cases of severe COVID-19 in unusual clusters (M_IN, 11 

SD_IN) compared to cases randomly distributed outside clusters (M_OUT, SD_OUT). Measures of 12 

IMD are decile values. Measures of AHAH include four domains: distance (km) from retail 13 

environments, health services, physical environments, and air quality. 14 

Domain Factor M_In SD_IN M_Out SD_Out 

Retail environments 

Gambling 2.02 2.63 2.50 2.87 
Fast food 1.85 2.65 2.18 2.48 
Pubs/clubs/bars 1.40 1.91 1.87 2.22 
Off License 4.00 5.50 4.87 6.62 
Tobacconists 3.26 3.861 3.63 3.41 

Health services 

GPs 1.44 1.47 1.67 1.55 
A&E 16.76 16.40 12.52 10.30 
Dentists 1.65 1.97 2.10 2.28 
Pharmacies 1.21 1.50 1.39 1.62 

 Leisure 3.12 3.95 3.95 4.317 

Physical environment  
Green Space (passive) .34 .25 .36 .48 
Green Space (active) .54 .59 .58 .55 
Blue Space 2.24 1.79 2.57 2.13 

 Nitrogen Dioxide  12.59 2.31 11.77 1.81 
Air pollution Particulate Matter 13.64 1.60 14.30 .80 

 Sulphur Dioxide 1.40 .29 1.24 .23 

 IMDDecil 4.38 2.84 5.04 2.875 
 Age 48.97 25.86 50.69 26.09 

 15 

Table 4. Proportion of cases in unusual clusters (IN(%)) compared to randomly distributed cases 16 

outside clusters (OUT (%)) by sex and Rural Urban Classification Categories (RUC). 17 

  In (%) Out (%) 

RUC 

Urban major conurbation <1 <1 
Urban minor conurbation 34.9 16.5 
Urban city and town 49.1 62 
Urban city and town in sparse setting <1 .6 
Rural town and fringe 10.3 12.8 
Rural town and fringe in sparse setting <1 <1 
Rural village and dispersed 4.3 7.3 
Rural village and dispersed in sparse setting 1.3 .2 

Sex 

Female 54 53 
Male 45 46 
Missing <1 <1 

 18 
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4.2.2 Regression analysis  19 

A binary logistic regression analysis was conducted to investigate factors that are associated with 20 

cluster membership. Given the highly unequal distribution of cases by binary categories, the 21 

probability cutoff was set to .6, as distinct from the usual cutoff of .5 for randomly distributed binary 22 

data (Calabrese, 2014), and the model parameters were set to predict the log-odds of membership 23 

in the major category (randomly distributed cases) compared to the minor category (unusual 24 

clusters). We also performed bootstrap sampling to account for dependencies between cases in 25 

clusters. This analysis did not change the P-values or significant predictors in the regression model.  26 

The results indicate that 12 of 16 variables that input to the Access to Healthy Assets and Hazardous 27 

Index (AHAHI), and 4 rural and urban categories are significant predictors of whether cases are 28 

distributed randomly or appear in unusual clusters by population (Chi-square = 2028.36, df = 26, P = 29 

.00). Age, sex, Index of Multiple Deprivation (IMD) Decile, the remaining 4 AHAHI variables 30 

(Accessibility to leisure centres, gambling districts, Green Space and dentists) and 3 rural and urban 31 

categories (Urban major conurbation, Urban city and town and Rural town and fringe) are not 32 

significant. The model correctly predicted 41.3% of cases that appear in clusters and 98.7% of cases 33 

that do not appear in clusters, giving an overall percentage correct prediction rate of 92.5%5.  34 

Table 5 displays the binary logistic regression results for the independent variables that were found 35 

to be associated with cluster membership. Compared to randomly distributed cases, cases in clusters 36 

are more likely to be located closer to pubs/bars/clubs, Blue Space, off licenses, Passive Green 37 

Space, as well as in areas with higher levels of Nitrogen Oxide, and in  RUC categories ‘urban minor 38 

conurbation’, ‘urban city and town in sparse’, ‘rural town and fringe’, and ‘rural village and 39 

dispersed’. Randomly distributed cases that do not occur in clusters are located closer to 40 

tobacconists, GP practices, A&E hospitals, and pharmacies, as well as in areas with higher levels of 41 

particulate matter and Sulphur Dioxide.  42 

 43 

 44 

 45 

 46 

 47 

 48 

 49 

 50 

 51 

                                                           
5 The asymmetry in predictive accuracy for cases appearing in clusters compared to cases not appearing in 
clusters is a common phenomenon of highly unequal datasets (Calabrese, 2014) and reflects the true rarity of 
cases appearing in clusters.  
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Table 5. Binary logistic regression analysis predicting cluster membership. Positive B values indicate 52 

an increased likelihood of random distribution and a decreased likelihood of cases occurring in 53 

clusters. Negative B values indicate a decreased likelihood of random distribution and an increased 54 

likelihood of cases occurring in clusters.  55 

      B SE Wald df Exp(B)  95% CI 

 
 
 
 
 
 
AHAHI 

Accessibility to fast food outlets -.16 .04 15.63 1 .85** .78, .92 
Accessibility to pubs/bars/nightclubs .2 .04 21.43 1 1.22* 1.12, 1.33 
Accessibility to Blue Space .09 .02 14.5 1 1.1* 1.04, 1.14 
Accessibility to Off Licenses .02 .01 5.18 1 1.02** 1, 1.04 
Accessibility to tobacconists -.1 .02 17.73 1 .91* .87, .95 
Passive Green Space (within 900m buffer) .56 .1 33.26 1 1.75* 1.45, 2.11 
Accessibility to GP practices -.14 .045 10.28 1 .87* .92, 1.2 
Accessibility to A&E hospitals -.12 .005 529.67 1 .9* .89, .91 
Accessibility to pharmacies -.11 .05 3.89 1 .9** .81, 1.01 

Level of Nitrogen Dioxide (NO2) -1.12 .05 591.83 1 1.75* .3, .4 

Level of Particulate Matter (PM10) 1.51 .06 662.64 1 4.53* 4.04, 5.9 
Level of Sulphur Dioxide (SO2) 1.98 .28 48.26 1 7.22* 4.13, 12.6 

 
 

RUC 

Urban minor conurbation  -.92 .09 103.03 1 .4* .33, .48 
Urban city and town in a sparse setting -.54 .17 10.23 1 .58* .48, .81 
Rural town and fringe -3.01 1.26 5.77 1 .05** .00, .58 
Rural village and dispersed  -3.9 .7 34.76 1 .02* .00, .07 

      *Statistically significant at P < .01 56 
      **Statistically significant at P < .05 57 

 58 

 4.2.3 Index of Multiple Deprivation ANOVA 59 

Regression analysis revealed that IMD deciles was not a significant predictor of whether 60 

provisionally diagnosed severe COVID-19 cases were distributed randomly or occurred in unusual 61 

clusters. ANOVA was also computed to identify whether IMD scores varied between each individual 62 

cluster, and areas with randomly distributed cases. There was a significant difference for IMD decile 63 

scores between Cluster 1 (M = 2.93, SD = 2), Cluster 2 (M = 2.42, SD = 1.21), Cluster 3 (M = 3.22, SD = 64 

2), Cluster 4 (M = 6, SD = 2.33), Cluster 5 (M = 7.4, SD = 2), Cluster 6 (M = 9, SD = .6), Cluster 7 (M = 65 

3.9, SD = 2.83), Cluster 8 (M = 2.86, SD = .83), Cluster 9 (M = 8.06, SD = 1.86), Cluster 10 (M = 7.84, 66 

SD = 1.9), Cluster 11 (M = 2.49, SD = 1.04), Cluster 12 (M = 4.68, SD = 3.18), Cluster 13 (M = 5.79, SD 67 

= 2.48), and cases that are evenly distributed (M = 5.04, SD = 2.88), F(13, 10331)=40.96, p=.00.  68 

4.3 Characteristics of unusually high severe COVID-19 clusters 69 

The statistical analysis presented in section 5.2 considers factors related to all the clusters of 70 

suspected severe COVID-19 cases in the East Midlands. The geospatial analysis presented below 71 

considers the characteristics of individual clusters. The following series of maps (Figures 6-9) display 72 

the distribution of factors related to retail environments, health services, physical environments 73 

(including RUC), air pollution, and IMD.  With the exception of RUC, all other factors are represented 74 

as deciles values.  75 

 76 

 77 

 78 
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Figure 5.  Maps depicting distance (km) from ‘harmful’ retail environments derived from the Access 79 

to Healthy Assets and Hazardous Index (AHAHI) that are associated with cluster membership, 80 

including off licenses, pubs/ bar/clubs, fast food outlets and tobacconists. The green spectrum 81 

indicates areas that are further away and the red spectrum indicates areas that are closer. The 13 82 

clusters of high numbers of suspected COVID-19 cases (identified using a Kulldorff spatial scan 83 

statistic) are superimposed as black circles and numbered consistent with Table 2.   84 

A. Off licenses B. Pubs/bars/clubs 

  
C. Fast food outlets D. Tobacconists 

  

 85 

 86 

 87 

 88 

 89 

 90 

 91 

 92 



17 

 

E. A&E hospitals F. GPs 

  
G. Pharmacies  

 

Figure 6.  Maps depicting distance (km) from ‘healthy’ 
services derived from the Access to Healthy Assets and 
Hazardous Index (AHAHI) that are associated with cluster 
membership, including A&E hospitals, GPs, and 
pharmacies. The green spectrum indicates areas that are 
closer and the red spectrum indicates areas that are 
further away. The 13 clusters of high numbers of 
suspected COVID-19 cases (identified using a Kulldorff 
spatial scan statistic) are superimposed as black circles 
and numbered consistent with Table 2.   

 

 93 

 94 

 95 

 96 

 97 

 98 

 99 

 100 

 101 

 102 

 103 

 104 
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H. Green Space (passive) I. Blue Space 

  
J. Rural Urban Categories (RUC)  

 

Figure 7.  Maps depicting distance (km) from physical 
environments derived from the Access to Healthy Assets 
Hazardous Index (AHAHI) and degree of 
urbanization/rurality, that are associated with cluster 
membership, including Green Space (passive), Blue 
Space, and RUC categories. The 13 clusters of high 
numbers of suspected COVID-19 cases (identified using a 
Kulldorff spatial scan statistic) are superimposed as white 
circles and numbered consistent with Table 2.   

 

 105 

 106 

 107 

 108 

 109 

 110 

 111 

 112 

 113 

 114 

 115 

 116 
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K. Particulate Matter (PM10) L. Sulphur Dioxide (SO2) 

  
M. Nitrogen Dioxide (NO2)  

 

Figure 8.  Maps depicting the level of pollutants derived 
from the Access to Healthy Assets Hazardous Index 
(AHAHI) that are associated with cluster membership, 
including Particulate Matter (PM10), Sulphur Dioxide 
(SO2) and Nitrogen Dioxide (NO2). The green spectrum 
indicates lower levels of pollutants and the red spectrum 
indicates higher levels. The 13 clusters of high numbers of 
suspected COVID-19 cases (identified using a Kulldorff 
spatial scan statistic) are superimposed as black circles 
and numbered consistent with Table 2.   

 117 

 118 

 119 

 120 

 121 

 122 

 123 

 124 

 125 

 126 

 127 

 128 
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Figure 9.  Map of Index of Multiple Deprivation (IMD) distribution and unusual clusters of 
suspected COVID-19 cases. The green spectrum indicates greater affluence and the red spectrum 
indicates greater deprivation. The 13 clusters of high numbers of suspected COVID-19 cases 
(identified using a Kulldorff spatial scan statistic) are superimposed as black circles and numbered 
consistent with Table 2.   

 

Importantly, clusters displayed on the maps reflect the radius within which individual cases of 129 

suspected COVID-19 occur. To preserve the anonymity of EMAS patients, we have not displayed the 130 

specific location of cases within clusters. Table 6 synthesizes the characteristics of each individual 131 

cluster compared to areas with cases that are randomly distributed. Average scores for RUC, IMD 132 

and AHAHI have also been deidentified 6. Rather than exact values, Table 6 compares the 133 

characteristics of clusters to average values for all areas with randomly distributed cases. In some 134 

instances, the visual characteristics of a cluster may vary from the characteristics reported in Table 6. 135 

For example, Figure 9 displays the distribution of IMD scores within clusters. A cluster may appear to 136 

be predominately affluent (towards the green end of the colour scale) while most suspected COVID-137 

19 cases fall within a small area that is severely deprived (towards the red end of the colour scale). 138 

Taken together, visual and statistical analyses represent cluster characteristics accurately while 139 

maintaining the anonymity of patient locations.140 

                                                           
6 Patient anonymity is a requirement of the approved IRAS. It may be possible to triangulate cluster 
information, such as radius, and specific values, such as IMD, to identify more specific locations. Our approach 
maintains anonymity and complies with the terms of ethical approval.  
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Table 6. Characteristics of individual clusters of unusually high suspected cases of COVID-19 compared to randomly distributed cases, including the 

proportion of cases in urban (U) and rural (R) areas (RUC), Index of Multiple Deprivation (IMD) Decile, and Access to Healthy Assets and Hazardous Index  

(AHAI) indictors (average distance (km) from retail environments, health services, and physical environments, as well as average level of air pollutants). For 

cases that are randomly distributed by population (Non-cluster), average values for each indicator, and the average score of aggregated indictors for each 

domain are reported. For each cluster, a ‘+’ sign indicates when the average score for each indicator, or average aggregated domain score, is higher than 

the equivalent score for ‘Non-cluster’ cases. A ‘-‘ sign indicates when the average score is lower than the equivalent score for ‘Non-cluster’ cases. A score of 

‘0’ indicates no difference between cluster scores and non-cluster scores. 

Cluster IMD 
Decile 

RUC (%)* Retail* Health*  Physical* Pollution* 
U R FF PBC OL T X GP A&E P X B G X PM NO SO X 

 Non-cluster 5.04 80 20 2.9 1.87 4.8 3.64 3.3 1.7 12.52 1.4 5.21 2.57 .37 1.47 7.25 6.16 6.61 6.67 

1 Nottingham - + - - - - - - - - - - - 0 - + + + + 
2 Leicester - + - - - - - - - - - - - 0 - + + + + 
3 Derby - + - - - - - - - - - - - + - - + + + 
4 W. Peak + - + - - - - - 0 + - + + 0 + - + + - 
5 E. Rugby + - + + + + + + + + + + - 0 - - - - - 
6 E. Peak + - + + + + + + + + + + - - - - + + - 
7 W. Grimsby - + - - + + + + 0 + 0 + + 0 + - + + + 
8 W. Skeg - - + + + + + + + + + + + - + + - - - 
9 S.W. Leicester + - + + - - + + 0 + + 0 + - + 0 - - - 

10 S. W. Derby + + - - - + - - - - - - - 0 - - + + + 
11 Northampton - + - - - - - - - - - - - + - + - - 0 
12 E. Grimsby - + - - - - + - - + - + + 0 + - + + + 
13 N. Chesterfield + + - + - - - - - - + - - - - - + + - 

*Rural and Urban Categories: Urban (U), Rural (R). Scores indicate % of sites in more urban and more rural areas 

     Retail Environment: Fast food (FF), Pubs/bars/clubs (PBC), Off license (OL), Tobacconists (T) 

      Health Services: General Practitioners (GPs), A&E Hospitals (A&E), Pharmacies (P) 

     Physical Environments: Blue Space (B), Green Space (passive) (G) 

      Air Pollution: Particulate Matter 10 (PM), Nitrous Oxide (NO), Sulphur Dioxide (SO) 
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6. Discussion: 1 

One year into the COVID-19 pandemic research related to public health, epidemiology, and urban 2 

planning has advanced knowledge and understanding about the groups in society that are 3 

particularly vulnerable to severe illness from COVID-19. Most research about vulnerable 4 

communities and regions considers the association between COVID-19 cases and individual domains, 5 

such as deprivation or urbanisation. To our knowledge, the only prior study to use an approach 6 

similar to the methodology presented here is Kiaghandi et al. (2020) who examined the relationship 7 

between confirmed COVID-19 cases in Harris County, Texas and 46 variables across five domains, 8 

including access to health services, and environmental exposures. However, the study did not 9 

distinguish between severe illness and asymptomatic or mild cases. Further, their research used 10 

aggregate measures collated from a census to estimate the demographic characteristics of patients 11 

rather than individual records. Thus, while granular, the approach is limited for identifying 12 

communities vulnerable to severe illness and/or death. The trends identified may more accurately 13 

reflect transmission, rather than underlying susceptibility. 14 

Severe illness from COVID-19 requiring emergency medical services reflects the intersection of 15 

exposure and underlying susceptibility. Vulnerability to severe symptoms is the outcome of complex 16 

interactions between individual demographic characteristics and community-scale socio-economic 17 

and environmental factors. Our approach, identifying and interrogating unusual clusters of severe 18 

illness from COVID-19, and investigating associations between unusual clusters and social and 19 

environmental features of landscapes offers a methodology for further supporting vulnerable 20 

communities and regions in real-time.  21 

6.1 Identifying unusual clusters and predicting cluster membership 22 

Our spatial analysis revealed 13 statistically significant clusters of suspected COVID-19 cases (Figure 23 

2) with rates of severe illness ranging from 951 to 3,417 per 100,000 population. Regression analysis 24 

identified 13 factors that predict cluster membership. Overall, the predictive accuracy of our 25 

regression model is high, with lower specific accuracy for cases occurring in clusters compared to 26 

cases occurring outside of clusters. However, the proportion of cases predicted in clusters and 27 

outside of clusters are both acceptable and suggest good model fit.  28 

Compared to the reference condition (urban towns and cities), clusters of severe illness are more 29 

likely to occur in urban minor conurbations, urban cities and towns in sparse areas, rural towns and 30 

fringe areas, and rural villages and dispersed areas. Clusters occur closer to pubs/bars/clubs, off 31 

license stores, and Passive Green Space, and further away from fast food, tobacconists, GP practices, 32 

A&E hospitals, and pharmacies. The strongest predictors of cluster membership are closer location 33 

to Passive Green Space (such as commons and wilderness areas) and higher levels of NO2. Strong 34 

associations were also found to PM10 and SO2 levels7.  35 

Some landscape scale trends are consistent with wider literature. For example, NO2 concentrations 36 

are associated with respiratory hospital admissions more generally (Pannullo et al., 2017) as well as 37 

COVID-19 related mortality (Kiaghadi et al., 2020; Travaglio et al., 2021). Our results also provide 38 

support for other research demonstrating increased vulnerability to disease in urban areas 39 

                                                           
7 The small range of mean values for SO2 (.9-1.9 µg m-3) has almost certainly inflated the odds ratio and effect size for this 
pollutant. Similarly, the wide odds ratio confidence interval for SO2, compared to all other variables, suggests a high degree 
of uncertainty. Further, PM10 comprises numerous air pollutants, including organic matter, and has a long-range transport 
of thousands of kilometres (Malcom et al., 2010). The complex composition and movement of PM10 may explain the 
trends observed in our study, particularly in more regional and coastal areas where industrial activity and marine aerosols 
can contribute to concentration levels (Byrd et al., 2010). 
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compared to rural areas (Paul et al., 2020), and those further away from health services (Daras et al., 40 

2019). Clusters 1 to 3 are entirely urban, while 10, 12, 13 and 7 are located in areas with higher than 41 

average proportions of sites in urban areas compared to non-clusters sites, and to national 42 

proportions (DEFRA, 2020).  43 

Other findings are less consistent with assumptions about landscape teleconnections and health 44 

outcomes. The likelihood of cluster membership simultaneously increases at locations closer to off 45 

license stores and pubs/bars/clubs, but more distant from fast food venues and tobacconists. The 46 

AHAHI, and associated literature, assumes that access to all ‘healthy’ assets promotes better health 47 

condition while access to ‘hazardous’ assets facilitates poorer health condition (Green et al., 2018). 48 

These trends may be related to the nature of amenities and services in rural areas compared to 49 

urban areas, and may explain why some retail environments increase likelihood of cluster 50 

membership while others do no. Rural towns often contain local pubs while tobacconists and fast 51 

food venues are less common. Thus, distance from both retail outlets (more commonly found in 52 

more densely populated areas) and health services may reflect poorer access to services more 53 

generally, and thus greater vulnerability to illness (Jordan et al., 2004).  54 

Similarly, health literature suggests that closer proximity to green space is associated with better 55 

health outcomes (Daras et al., 2018). We found that clusters are more likely to occur closer to, 56 

rather than more distant from Passive Green Space, like commons or conservation areas. This may 57 

be related to the nature of Passive, as opposed to Active green spaces. Passive Green Space like 58 

commons is likely to reflect urban periphery or rurality while Active Green Space like gymnasiums 59 

tend to be located in urban centres. The varied relationships between landscape features and 60 

vulnerability in urban compared to more regional areas, deserve more detailed consideration. For 61 

example, it is possible that closeness to Passive Green Space reflects social behaviour during the 62 

pandemic. In a perspective piece published in this Special Edition8 we examine the relationship 63 

between landscape features and the implications for COVID-19 exposure and underlying 64 

susceptibility in more depth. During extended phases of lockdown parks and arboretums became 65 

social hubs that were poorly monitored by local authorities. News reports documented continual 66 

violations of social distancing rules in public spaces like beaches and common green areas. Thus, 67 

improving the monitoring and enforcement of social distancing in these spaces may be a future 68 

avenue for mitigating high rates of severe COVID-19 cases.  69 

Below we suggest that the balance of expected and unexpected associations between unusual 70 

clusters and landscape features reflect differences in the individual characteristics of clusters, and 71 

the nature of vulnerability between more rural and more urban landscapes.  72 

6.3 Characteristics of individual clusters  73 

The characteristics of clusters vary in two ways. Firstly, the degree of relative risk, and secondly in 74 

relation to wider geographic context. In order, clusters with the highest relative risk compared to the 75 

medium value were east of Rugby (5), east of the Peak District (6), south west of Derby (10), west of 76 

Grimsby (7), Leicester (2), and East Grimsby (12) (Figure 3). This analysis gives some indication of 77 

regions where communities may be particularly vulnerable.  78 

Spatial analysis (Figure 5-9) revealed several important geographic distinctions between clusters. On 79 

this basis we classify clusters in the following categories: inland urban, rural or rural-urban mosaic, 80 

                                                           
8 Rethinking the health implications of society-environment relationships in built areas: an assessment of the Access to 
Healthy and Hazards Index in the context of COVID-19. 
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and coastal urban (Table 7). Category One, ‘Inland Urban’ including Nottingham, Leicester, Derby, 81 

Northampton, and Chesterfield, are predominately or entirely urban and characterized by closeness 82 

to healthy and hazardous services and beneficial physical environments. Clusters located closer to 83 

city centres (central Urban Inland: 1, 2, 3, 11) are more deprived, while clusters located in the 84 

periphery (peripheral Inland Urban: 13, 10) are more affluent. Category Two, ‘Rural and Mosaic’ 85 

clusters in the Peak District, near Rugby, and south west of Leicester, are either entirely rural or 86 

display a rural-urban mosaic with a higher proportion of cases in rural areas compared to areas with 87 

randomly distributed cases. Rural and Mosaic clusters are characterized by further distance from 88 

healthy and hazardous services, closer proximity to beneficial physical environments, and greater 89 

affluence. Category Three, ‘Coastal Urban’, includes clusters in predominately urban areas near 90 

Skegness and Grimsby. These clusters are characterized by deprivation, and further distance from all 91 

services and beneficial physical environments. Importantly, while each category includes clusters 92 

with higher levels of NO2, the sources are likely to vary; traffic contributes to poor air quality in large 93 

urban centres, such as Nottingham, while the operation of power plants effects air quality in more 94 

regional areas, such as the coastal Grimsby clusters. 95 

Table 7. Characteristic of clusters categorized as ‘Inland Urban’, ‘Rural and Mosaic’, and ‘Coastal 96 

Urban’, including Index of Multiple Deprivation (IMD), geographic location (inland or coastal), urban 97 

and rural dynamics, and Access to Healthy Assets and Hazardous Index (AHAHI). 98 

  Inland Urban Rural & Mosaic Coastal Urban 

  Central Peripheral   

IMD  More 
deprived 

More 
affluent 

More affluent More deprived 

Geographic location  Inland Inland Coastal 

Urban/rural 
 Entirely or higher than 

average % urban 
Entirely or higher 

than average % rural 
Entirely or higher than 

average % urban 

AHAHI 

Retail Closer More distant More distant 
Health Closer More distant More distant 

Physical Closer Closer More distant 
Air pollution Worse Better Variable* 

*Skegness cluster has better quality; Grimsby clusters have poorer quality. 99 

6.4 Understanding vulnerability in the social-environmental landscape 100 

Bioecological models suggest that health outcomes are the cumulative result of complex interactions 101 

between individual demographic and biological factors, and the social characteristics of wider 102 

environments (Bronfenbrenner, 1979; Eriksson et al., 2018). Social factors may reflect both exposure 103 

to transmission of a contagious virus, (e.g. poorly designed housing estates), and underlying 104 

susceptibility related to pre-existing health conditions (Patel et al., 2020). In addition to social 105 

dynamics, our analysis included physical characteristics of the built environment that may explain 106 

vulnerability to severe symptoms of infectious disease, such as distance from green space (Green et 107 

al., 2018).  108 

Our analysis suggests that unusual clusters occur at the nexus of individual susceptibility and 109 

exposures in the built environment. However, the dynamics of vulnerability vary between 110 

geographic locations. For example, Inland Urban clusters are located closer to all services while 111 

Coastal Urban clusters are located further from all services. Except Peripheral Inland Clusters, these 112 

regions are more deprived than areas with cases occurring randomly. Thus, the cumulative effect of 113 

exposure in high density urban areas and susceptibility associated with deprivation may be more 114 
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important determinants of vulnerability than distance from specific healthy and hazardous features 115 

of built environments.  116 

The characteristics of clusters in more affluent areas, including two with very high relative risk (10, 6) 117 

suggests that the dynamics of vulnerability vary markedly from clusters in poorer regions. Firstly, 118 

affluent clusters tend to be in more regional locations including urban peripheries and rural areas 119 

which are typically occupied by older communities (ONS, 2020c). In the U.S., rural communities with 120 

high rates of severe COVID-19 symptoms are characterised by aging populations and greater 121 

distance from health services (Lakhani et al., 2020). Similar characteristics may explain high relative 122 

risk in more peripheral and rural clusters in the East Midlands. With one exception (Skegness), the 123 

average age of patients located in the Peripheral Inner Urban clusters is higher than all other 124 

clusters, and Rural and Mosaic clusters are located further from health services. These dynamics 125 

indicate a ‘rural paradox’; lower risk of transmission, greater susceptibility to severe symptoms, and 126 

less access to the medical services required to meet the needs of susceptible communities. Taken 127 

together, these observations suggest that the relative contribution of demographic, socio-economic, 128 

and environmental factors to vulnerability varies depending on wider geographic location. Factors 129 

that influence underlying health susceptibility, like older age and distance from health services, may 130 

be stronger predictors of severe illness than socio-economic status in regional locations that are less 131 

exposed to transmission risks. In contrast, deprivation and high-density urbanism may outweigh the 132 

benefits of closeness to, or distance from, physical features of the built environment. In these cases, 133 

it is likely that susceptibility related to deprivation, and exposure related to urbanization, are more 134 

powerful drivers of overall vulnerability than access to health services or retail outlets. 135 

Similar to closeness to passive green spaces discussed above, our findings about vulnerability in rural 136 

areas suggest some policy responses for future pandemics and phases of lockdown. News reporting 137 

during the first national phase of lockdown suggests that the public viewed rural areas as less 138 

vulnerable to contagion and mortality related to COVID-19 compared to urban areas (e.g., McCarthy, 139 

2020). Further, rural communities reported the phenomenon of people from urban and peri-urban 140 

areas ‘flocking’ to rural regions for recreation during phases of lockdown when only essential travel 141 

was legally permitted (Asquith, 2020). In the event of future phases of lockdown, mitigating high 142 

rates of severe illness in rural areas with aging populations may require more stringent policing of 143 

travel between urban and rural areas.  144 

In summary, factors and processes that explain vulnerability to severe COVID-19 illness and or death 145 

are complex and highly location-specific. Bioecological models traditionally focus on the interaction 146 

between complex social systems while urban theories emphasise distal associations within physical 147 

environmental landscapes. We suggest that social and physical landscape factors rightly belong in a 148 

theoretical space akin to Bronfenbrenner’s Mesosystem, which includes processes and interactions 149 

that occur within homes, communities, and neighbourhoods (Bronfenbrenner, 1979). Figure 11 150 

visualises what this Mesosystem might look like.  151 
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 152 

Figure 11. Schematic showing the social-environmental Mesosphere demonstrating the multi-level 153 

factors associated with severe illness from COVID-19. The dotted arrow indicates the interaction 154 

between socio-economic factors and physical landscape factors within the Mesosphere.  155 

The granularity of our analysis, facilitated by the high resolution of the data, offers some important 156 

insights for supporting the most vulnerable communities in real-time during the early phase of a 157 

pandemic when laboratory testing is limited and public policy is informed by cases in the 158 

community. In the case of COVID-19, those vulnerable communities include deprived urban 159 

neighbourhoods and more affluent regional neighbourhoods.  160 

6.5 Strengths and limitations 161 

There are three limitations of the research. Firstly, big data does not capture individual behaviour; 162 

distance from green space and other amenities does not reflect use. Secondly, factors beyond the 163 

scope and scale of this research may affect ambulance use. People within close proximity to 164 

hospitals with A&E services are more likely to access those services directly rather than calling an 165 

ambulance. Similarly, willingness to call an ambulance may vary between communities. Poor health 166 

literacy, including ability to recognize symptoms of illness, is often associated with deprivation 167 

(Niksic et al., 2015). As a result, it is likely that our data does not represent all severe cases of 168 

suspected COVID-19 in the study region. Thus, qualitative community scale research is needed to 169 

ground truth the trends and associations reported here. Finally, without data linkage, suspected 170 

COVID-19 cases cannot be confirmed. However, the preliminary diagnosis of suspected COVID-19 is 171 

based on the assessment of trained medical professionals following the guidelines and algorithms 172 

that were widely employed by medical services in the early phases of the pandemic before rapid 173 

testing was available. Further, measures taken by ambulance paramedics, including blood oxygen 174 

levels (Soltan et al., 2021) and self-reported OTD (Wee, 2020; Patterson, 2020; Printza & 175 

Constantinidis, 2020), have been demonstrated to predict positive cases with a high degree of 176 

accuracy. The need for rapid response is paramount. The spatial accuracy of our approach, using a 177 

novel routinely collated dataset demonstrates a methodology for identifying vulnerable 178 

communities in real-time, as well as understanding the demographic, socio-economic, and 179 

environmental characteristics of vulnerability across dynamic geographic landscapes.  180 



27 

 

7. Conclusions: 181 

Vulnerability to severe illness from contagious disease occurs at the intersection of exposure and 182 

underlying susceptibility. The effect of biological, social, and environmental risk factors is 183 

cumulative. Thus, single characteristics of built environments like deprivation or air pollution do not 184 

explain severe symptoms that require emergency medical attention. Our analysis builds on 185 

advancements in public health, epidemiology and urban planning by integrating features of the built 186 

environment with more traditional bioecological frameworks that tend to focus on complex social 187 

interactions.  188 

The analysis of ambulance attendance data for monitoring the progress of the pandemic is a novel 189 

approach in the UK, and to our knowledge, has not been used to identify clusters of COVID-19 190 

elsewhere. We acknowledge that analysing suspected COVID-19 cases is an imperfect science. 191 

However, we offer some insights that may be of benefit for rapid response as well as longer-term 192 

urban planning: 193 

 Joining ambulance data to publicly available big datasets like the IMD and AHAHI could 194 
identify vulnerable communities in real-time;  195 

 Understanding the social and environmental characteristics of vulnerability may help policy 196 
makers to mitigate the impact of a new EID on communities;  197 

 Identifying vulnerable communities in real-time could inform earlier localised lockdowns to 198 
mitigate transmission and reduce rates of severe illness. Targeting areas where contagion is 199 
likely to result in high rates of hospitalisation would also reduce burden on emergency 200 
medical services;  201 

 Opportunities for mitigating transmission also include more effective monitoring and 202 
enforcement of social distancing rules in Passive Green Space, including parks, commons and 203 
arboretums, as well as for urban-rural travel during lockdown; 204 

 The dynamics of vulnerability vary between urban centres and more peripheral or rural 205 
regions, and between more deprived compared to more affluent communities. The 206 
opportunities for minimising the impacts of a pandemic include reducing the underlying 207 
susceptibility of communities as well as minimising transmission. In part, this involves urban 208 
planning to enhance opportunities for health behaviours. Improving the safety of green 209 
spaces for cost-free exercise, and increasing infrastructural and financial access to healthy 210 
food would promote healthier lifestyles in deprived communities. Further, improving access 211 
to health services in more affluent and isolated communities may help to mitigate the most 212 
severe outcomes of a pandemic. However, in both cases this requires top-down financial 213 
investment to encourage healthy retail outlets to locate in deprived neighbourhoods, and 214 
health services to locate in low-density neighbourhoods.   215 

At the time of writing, twelve months has elapsed since the declaration of the COVID-19 pandemic 216 

and the introduction of national responses to contain transmission. Some approaches have proven 217 

more successful than others. Identifying unusual clusters of suspected COVID-19 cases and the 218 

factors that predict the location of clusters offers a way forward for the UK to adopt more targeted 219 

physical distancing approaches that have been effective for preventing further outbreaks and 220 

reducing the economic burden of nation-wide lockdown elsewhere. Unequal health outcomes and 221 

severe illness in the UK reflects decades of systemic disadvantage and accumulated vulnerability 222 

(Marmot et al., 2020). Addressing underlying susceptibility will require long-term investment in 223 

areas including neighbourhood quality, educational attainment, and closing income gaps. Mitigating 224 

the impact of future pandemics necessarily involves ‘levelling up’ health across the UK, including 225 

between rural and urban spaces, coastal and inland spaces, and deprived and affluent communities.  226 
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As a global society, we have entered an indeterminate phase of uncertainty and trial-and-error in 227 

combating the pandemic.  In the wake of the most immediate threat to human life, policy makers 228 

face the challenge of redefining the relationship between societies and their urban habitats. Utilizing 229 

big-data to identify hot-spots of vulnerability could be used as a method to inform current mitigation 230 

policy, as well as longer-term transitions towards healthier urban landscapes.  231 

 232 
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