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Let f(x) be a non-zero polynomial with integer coefficients. 
An automorphism ϕ of a group G is said to satisfy the 
elementary abelian identity f(x) if the linear transformation 
induced by ϕ on every characteristic elementary abelian 
section of G is annihilated by f(x). We prove that if a finite 
(soluble) group G admits a fixed-point-free automorphism ϕ
satisfying an elementary abelian identity f(x), where f(x) is a 
primitive polynomial, then the Fitting height of G is bounded 
in terms of deg(f(x)). We also prove that if f(x) is any non-
zero polynomial and G is a σ′-group for a finite set of primes 
σ = σ(f(x)) depending only on f(x), then the Fitting height 
of G is bounded in terms of the number irr(f(x)) of different 
irreducible factors in the decomposition of f(x). These bounds 
for the Fitting height are stronger than the well-known bounds 
in terms of the composition length α(|ϕ|) of 〈ϕ〉 when deg f(x)
or irr(f(x)) is small in comparison with α(|ϕ|).
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1. Introduction

An automorphism ϕ of a group G is said to be fixed-point-free if CG(ϕ) = 1, that 
is, the only fixed point of ϕ is 1. By the celebrated theorem of Thompson [33], a finite 
group with a fixed-point-free automorphism of prime order p is nilpotent (and the nilpo-
tency class is bounded in terms of p by Higman’s theorem [10], with the bound made 
effective by Kreknin and Kostrikin [24,25]). Based on the classification of finite simple 
groups, Rowley [31] proved the solubility of a finite group admitting a fixed-point-free 
automorphism of any order (not necessarily coprime to |G|).

If a finite (soluble) group G admits a fixed-point-free automorphism ϕ of coprime 
order, then the Fitting height of G is at most the composition length α(|ϕ|) of 〈ϕ〉, 
which is the best possible bound. In this most general form, this is a special case of 
Berger’s theorem [3]. Earlier results under certain restrictions on the primes dividing |ϕ|
were obtained by Shult [32] and Gross [8]. Their papers contained important so-called 
non-modular Hall–Higman type theorems (with Gross also referring to Dade’s seminar 
notes of 1964).

A special case of Dade’s theorem [4] gives a bound for the Fitting height of G admitting 
a fixed-point-free automorphism ϕ of non-coprime order. The bound furnished by Dade’s 
theorem is exponential in α(|ϕ|); a significant improvement to a quadratic bound was 
recently obtained by Jabara [17].

There are also many results, starting from the papers of Thompson [34] and Dade [4], 
on bounding the Fitting height of finite soluble groups in terms of fixed points and 
orders of their (not necessarily cyclic) groups of automorphisms. We refer the reader to 
the survey of Turull [35], who obtained some of the best results in this area.

Another important direction is studying groups with automorphisms satisfying cer-
tain identities. In particular, so-called splitting automorphisms ϕ (satisfying the identity 
xxϕxϕ2 · · ·xϕ|ϕ|−1 = 1) arise in connection with the Hughes subgroup and its general-
izations, and with periodic profinite groups [1,2,5,6,12,15,16,18–23,26,36].

In this paper we consider finite groups G admitting a fixed-point-free automorphism 
ϕ that satisfies an additional polynomial identity f(x) for an arbitrary polynomial 
f(x) ∈ Z[x]; see the precise definition below. Imposing this additional condition on 
the automorphism is justified by obtaining upper bounds for the Fitting height of G
independent of α(|ϕ|). Instead, we obtain bounds for the Fitting height of G depending 
only on the degree of f(x) (Theorem 1.4) or on the number irr(f(x)) of different irre-
ducible factors in the decomposition of f(x) (Theorem 1.5). The bounds obtained in our 
theorems are stronger than the known bound α(|ϕ|) for coprime automorphisms (or a 
bound in terms of α(|ϕ|) in general) when deg f(x) or irr(f(x)) is small in comparison 
with α(|ϕ|). Our result in terms of deg(f(x)) applies to any finite group G (with a natu-
ral and unavoidable condition on the polynomial f(x)). The result in terms of irr(f(x))
applies to all finite σ′-groups, where σ = σ(f(x)) is a finite set of primes depending only 
on f(x).
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Earlier this approach to the study of finite groups with fixed-point-free automorphisms 
was proposed by the second author [27–29].

We now pass to precise definitions and statements of the results. Let ϕ be an auto-
morphism of a group G.

Definition 1.1. We say that a polynomial f(x) = a0 + a1x + · · · + adx
d ∈ Z[x] is an 

ordered identity of ϕ if

ga0 · (gϕ)a1 · · · (gϕd

)ad = 1 for all g ∈ G.

When G is an abelian group, the order of the factors here is unimportant, and then we 
can simply say that f(x) is an identity of ϕ.

Definition 1.2. We say that a polynomial f(x) ∈ Z[x] is an elementary abelian identity
of ϕ if f(x) is an identity of the automorphisms induced by ϕ on every characteristic 
elementary abelian section of G. In this case, we also say that ϕ satisfies the elementary 
abelian identity f(x).

It is clear that an ordered identity of ϕ is also an elementary abelian identity of ϕ, 
but the converse is not true in general.

Remark 1.3. If f(x) is an elementary abelian identity of ϕ ∈ AutG and S is an elementary 
abelian p-group that is a characteristic section of G, then the Fp-linear transformation 
induced by ϕ on S regarded as a vector space over Fp is annihilated by the polynomial 
f(x) (reduced modulo p) in the ordinary sense of linear algebra.

We further recall that a polynomial f(x) = a0 + a1x + · · · + adx
d ∈ Z[x] is primitive

if its content gcd(a0, a1, . . . , ad) is 1. We can now state our first result.

Theorem 1.4. Suppose that a finite (soluble) group G admits a fixed-point-free automor-
phism satisfying an elementary abelian identity f(x) ∈ Z[x], where f(x) is a primitive 
polynomial. Then the Fitting height of G is at most 2 + 112 · deg(f(x))2.

Examples show that if we drop the condition that f(x) is primitive, then one cannot 
obtain a bound for the Fitting height of G in terms of deg(f(x)). We conjecture that such 
a bound could possibly be obtained for an arbitrary polynomial f(x) �= 0 if “elementary 
abelian identity” is replaced with the stronger “ordered identity”.

A stronger bound for the Fitting height is obtained for an arbitrary polynomial f(x)
under an additional restriction on the prime divisors of the order of the group. Recall 
that if σ is a set of primes, then a finite group G is a σ′-group if |G| is not divisible by 
any prime in σ. Let irr(f(x)) denote the number of different irreducible factors of f(x)
in Z[x] (counted without multiplicities).
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Theorem 1.5. Suppose that a finite (soluble) group G admits a fixed-point-free automor-
phism satisfying an elementary abelian identity f(x) ∈ Z[x], where f(x) is a non-zero 
polynomial. There is a finite set of primes σ = σ(f(x)) depending only on f(x) such that 
if G is a σ′-group, then the Fitting height of G is at most 2 + irr(f(x))2.

The set of primes σ(f(x)) in this theorem is described explicitly in Definition 5.2.
Earlier the second author [28] proved that, for ordered identities f(x) with irreducible 

polynomial f(x), Theorem 1.5 holds with a sharp bound 1 for the Fitting height (for a 
different finite set of primes σ(f(x))). In [29] the second author proved a result similar to 
Theorem 1.5 bounding the Fitting height of G by the number of irreducible factors of f(x)
counting multiplicities for a certain class of polynomials f(x). The bound for the Fitting 
height that we obtain in Theorem 1.5 may not be best-possible, but importantly it only 
depends on the number of different irreducible factors irr(f(x)) and the theorem holds 
for any non-zero polynomial f(x). The bound for the Fitting height in Theorem 1.4
is weaker, in terms of deg(f(x)), but the advantage is that it does not impose any 
restrictions on the prime divisors of |G| provided that the polynomial f(x) is primitive 
(for example, when f(x) is monic).

Let G be a finite (soluble) group admitting a fixed-point-free automorphism ϕ sat-
isfying an elementary abelian identity f(x) ∈ Z[x]. The first step in the proof of both 
Theorems 1.4 and 1.5 is to use Hall–Higman type theorems (with certain modifica-
tions) for obtaining a reduction to the situation where ϕ has order bounded in terms of 
deg(f(x)). Then the proof of Theorem 1.4 follows by an application of a special case of 
Dade’s theorem [4], or rather Jabara’s [17] recent improvement for the bound for the Fit-
ting height of a finite group admitting a fixed-point-free automorphism of not necessarily 
coprime order.

In the proof of Theorem 1.5 it is the Shult–Gross–Berger theorem that is ultimately 
applied after a reduction to the case of a (possibly different) coprime automorphism 
such that the number α(|ϕ|) of prime factors in |ϕ| counting multiplicities is bounded 
in terms of irr(f(x)). This becomes possible after defining a ‘forbidden’ finite set of 
primes σ depending only on f(x) such that for σ′-groups G the automorphism ϕ can be 
assumed to be of coprime order and ‘non-exceptional’ in the sense of Hall–Higman type 
theorems, while f(x) can be assumed to be a product of cyclotomic polynomials. Then 
Hall–Higman type theorems are applied again to reduce to a situation where α(|ϕ|) is 
bounded in terms of irr(f(x)) and an application of the Shult–Gross–Berger theorem 
finishes the proof.

2. Preliminaries

Suppose that a group A acts by automorphisms on a group B. We use the usual 
notation for commutators [b, a] = b−1ba and commutator subgroups [B, A] = 〈[b, a] |
b ∈ B, a ∈ A〉, as well as for centralizers CB(A) = {b ∈ B | ba = b for all a ∈ A} and 
CA(B) = {a ∈ A | ba = b for all b ∈ B}. In particular, then A/CA(B) embeds in the 
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automorphism group AutB. If ϕ is an automorphism of a group G and S is a ϕ-invariant 
section of G, then we denote by ϕ|S the automorphism induced by ϕ on S; sometimes 
we denote the induced automorphism by the same letter when this causes no confusion.

We recall the well-known property of coprime actions.

Lemma 2.1. Let ϕ be an automorphism of coprime order of a finite group G. If N is 
a normal ϕ-invariant subgroup, then CG/N (ϕ) = CG(ϕ)N/N . In particular, if ϕ acts 
trivially on every factor of some subnormal ϕ-invariant series of G, then ϕ = 1.

It is also known that if ϕ is a coprime automorphism of a finite group G, then for every 
prime q there is a ϕ-invariant Sylow q-subgroup. It is important for us that a similar 
property and an analogue of Lemma 2.1 hold for fixed-point-free automorphisms of any 
order, not necessarily coprime to the order of the group. Henceforth we freely use the 
fact that a finite group with a fixed-point-free automorphism is soluble [31].

Lemma 2.2 ([7, Theorem 10.1.2]). Let G be a finite (soluble) group admitting a fixed-
point-free automorphism ϕ, and let σ be a set of primes. Then G has a ϕ-invariant 
Hall-σ subgroup.

Proof. We only need to replace Sylow’s theorem with Hall’s theorem in the proof of [7, 
Theorem 10.1.2] to obtain the lemma for arbitrary sets of primes σ. �
Lemma 2.3 ([7, Lemma 10.1.3]). Let G be a finite group and let ϕ be a fixed-point-free 
automorphism of G. If N is a normal ϕ-invariant subgroup, then ϕ induces a fixed-point-
free automorphism of the quotient G/N .

The following result in its most general form is a special case of Berger’s theorem [3]. 
Earlier results under certain restrictions on the primes dividing |ϕ| were obtained by 
Shult [32] and Gross [8]. Recall that α(n) denotes the number of prime divisors of n
counting multiplicities.

Theorem 2.4 (Shult–Gross–Berger). If a finite (soluble) group G admits a fixed-point-free 
automorphism of coprime order n, then the Fitting height of G is at most α(n).

For fixed-point-free automorphisms of non-coprime order, the first (exponential) 
bound for the Fitting height was obtained as a special case of a theorem by Dade [4]; 
the quadratic bound was recently obtained by Jabara [17, Corollary 1.2].

Theorem 2.5 (Dade–Jabara). If a finite (soluble) group G admits a fixed-point-free auto-
morphism of order n, then the Fitting height of G is bounded in terms of α(n) and is at 
most 7α(n)2.
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We collect in the next lemma well-known facts about minimal polynomials of linear 
transformations (which are assumed monic). If ϕ is an automorphism of a vector space 
V over a field F , we regard V as a right F 〈ϕ〉-module.

Lemma 2.6. Suppose that ϕ is an automorphism of a vector space V over a field K.

(a) If ϕ is regarded as a linear transformation of the vector space V ⊗K K1 obtained by 
extending the ground field to K1, then the minimal polynomial remains the same.

(b) If ϕ is diagonalizable, then the degree of the minimal polynomial of ϕ is equal to the 
number of different eigenvalues of ϕ.

(c) There is a vector v ∈ V such that the minimal polynomial of ϕ for v, that is, the 
polynomial g(x) of smallest degree such that vg(ϕ) = 0, is the same as the minimal 
polynomial of ϕ for the whole space V .

(d) The degree of the minimal polynomial of ϕ is equal to the maximum dimension of 
the subspace spanned by an orbit of a vector under the action of 〈ϕ〉.

(e) If V = V1 ⊕ · · · ⊕ Vk, where Viϕ = Vi+1 for i = 1, . . . , k − 1 and Vkϕ = V1, then 
the degree of the minimal polynomial of ϕ on V is k · d, where d is the degree of the 
minimal polynomial of the restriction ϕk|V1 .

(f) The degree of the minimal polynomial of any power ϕk is at most the degree of the 
minimal polynomial of ϕ.

Proof. All these properties are well-known, but we still indicate some references.
(a) See [11, Ch. 6, page 192].
(b) This is well known.
(c) See [11, Ch. 7, Corollary of Theorem 3, page 237].
(d) This follows from (c).
(e) This follows from (d).
(f) This follows from (d). �
Recalling Definition 1.1 we can say that a linear transformation ϕ of a vector space 

satisfies an identity f(x) ∈ Z[x] if ϕ is annihilated by f(x) (reduced in the ground field).

Lemma 2.7. Let ϕ be an automorphism of finite order |ϕ| of a vector space V over 
a field of characteristic q coprime to |ϕ|. Suppose that ϕ satisfies the identity f(x) =∏c

i=1 Φni
(x), where the Φni

(x) are some cyclotomic polynomials such that gcd(q, ni) = 1.

(a) For any s ∈ N the power ϕs satisfies the identity 
∏c

i=1 Φni/gcd(ni,s)(x).
(b) If |ϕ| is divisible by a power of a prime pk, then one of the integers ni is divisible by 

pk.

Proof. Let Ṽ be the vector space obtained from V by extension of the ground field to 
an algebraically closed field K, so that ϕ naturally becomes a K-linear transformation 
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of Ṽ . Since the order of ϕ is coprime to the characteristic, the transformation ϕ of finite 
order is diagonalizable over K. The eigenvalues of ϕ are roots of f(x) (regarded as a 
polynomial in K[x]).

(a) The eigenvalues of ϕs are the s-th powers of the roots of ϕ, and therefore they are 
roots of 

∏c
i=1 Φni/gcd(ni,s)(x). Hence ϕs satisfies the polynomial 

∏c
i=1 Φni/gcd(ni,s)(x) on 

Ṽ and therefore also on V .
(b) If |ϕ| is divisible by a power of a prime pk, then at least one of the eigenvalues 

of ϕ has multiplicative order divisible by pk and therefore can be a root of a cyclotomic 
polynomial Φni

(x) only if ni is divisible by pk. �
Lemma 2.8. Let ϕ be an automorphism of a group G. Then the elementary abelian iden-
tities of ϕ form an ideal of Z[x].

Proof. Let f(x), g(x) ∈ Z[x] be elementary abelian identities of ϕ, and let h(x) ∈ Z[x]. 
Let S be a characteristic elementary abelian section of G regarded as a right Z〈ϕ〉-
module. Then by definition x(f(ϕ) + g(ϕ)) = 0 + 0 = 0 and x(f(ϕ)h(ϕ)) = 0h(ϕ) = 0
for all x ∈ S. Thus, both f(x) + g(x) and f(x)h(x) are elementary abelian identities of 
ϕ. �
Remark 2.9. In what follows, we will consider polynomials in the ring Z[x] and also 
polynomials with coefficients in a field of prime characteristic. Unless specifically stated 
otherwise, every polynomial is assumed to belong to Z[x]. Moreover: divisors, greatest 
common divisors, decompositions into irreducible factors, etc. are to be understood in 
the ring Z[x], unless stated otherwise.

The prime number theorem, commonly attributed to Hadamard and de la Vallée 
Poussin, establishes that the prime counting function π(x) satisfies π(x) ∼ x/ ln(x), that 
is, limx→∞ π(x)/(x/ ln(x)) = 1. We will use the following estimate due to Rosser and 
Schoenfeld [30, Corollary 1] that is valid for all x > 1.

Theorem 2.10. For all x > 1, we have π(x) < 1.25506 · x/ ln(x).

3. Hall–Higman type theorems

In this section we lay out the foundations of further proofs by producing Hall–Higman 
type theorems, both of ‘modular’ and ‘non-modular’ kind. First we state the celebrated 
Hall–Higman Theorem B, which is of ‘modular’ kind, dealing with the minimal polyno-
mial of an element of order pm in a linear group over a field of characteristic p.

Theorem 3.1 (Hall and Higman [9, Theorem B]). Let H be a p-soluble linear group over 
a field of characteristic p, with no normal p-subgroup greater than 1. If g is an element 
of order pm in H, then the minimal polynomial of g is (x − 1)d = 0, where d = pm, 
unless there is an integer m0 � m such that pm0 − 1 is a power of a prime q for which 
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a Sylow q-subgroup of H is non-abelian, in which case, if m0 is the least such integer, 
pm−m0(pm0 − 1) � d � pm.

Note that the degree d of the minimal polynomial of g satisfies d � pm − pm−1 in all 
cases.

We now consider Hall–Higman type results in so-called ‘non-modular’ situations, 
which analyse the minimal polynomial of an element of order pm in a linear group 
over a field of characteristic not equal to p.

Lemma 3.2. Suppose that L is an extra-special r-group of order r2t+1, and 〈η〉 is a cyclic 
group of order pk for a prime p �= r acting (not necessarily faithfully) by automorphisms 
on L such that the induced automorphism η̄ of L has order pm, acts regularly on the 
set L/Z(L) \ {1} with all orbits of length pm, and centralizes Z(L). Suppose that the 
semidirect product L〈η〉 acts by linear transformations on a vector space V over an 
algebraically closed field K whose characteristic does not divide p · r, and suppose that 
V is an irreducible KL〈η〉-module and a faithful and homogeneous KL-module.

(a) Then η as a linear transformation of V has at least pm− 1 different eigenvalues, so 
that the minimal polynomial of η on V has degree at least pm − 1.

(b) If in addition k = m (that is, η acts faithfully on L), then either the minimal 
polynomial of η on V is xpk − 1 or rt = pk − 1 and if p = 2, then t = 1.

Proof. Part (b) is the well-known result going back to the work of Dade, Gross, Shult, 
who modified the Hall–Higman Theorem B in [9] for the ‘non-modular’ case; see, for 
example, [8, Theorem 2.2] or [13, Satz V.17.13].

Part (a) does not seem to have appeared in the literature; its proof is similar to the 
well-known proof for (b), which was really using only the number of eigenvalues of η. We 
write this modified proof in full for the benefit of the reader.

By [14, Lemma IX.2.5], V is an irreducible KL-module and has dimension dimK V =
rt as a vector space over K. Then the enveloping algebra E for L coincides with the 
full matrix algebra [7, Theorem 3.6.2] and dimK E = r2t. The elements of Z(L) are 
represented by scalar transformations and multiplication by such a transformation in E
is equivalent to multiplication by the corresponding field element. Therefore any set of 
representatives of the r2t cosets of Z(L) forms a basis of the algebra E.

The element η naturally acts on E and we calculate the dimension of the centralizer 
of η in E. Since ηp

m belongs to the centre of the semidirect product L〈η〉 by hypothesis, 
the subgroup 〈ηpm〉 is represented by scalar transformations and the action of 〈η〉 on E
factors through to the action of 〈η̄〉 = 〈η〉/〈ηpm〉. Since η̄ acts regularly on L/Z(L) \ {1}
with orbits of length pm, it acts regularly on the elements of some basis of E except 
for one element of this basis that corresponds to Z(L) and belongs to CE(η). In every 
subspace of E spanned by a non-trivial orbit of η on this basis, the fixed point subspace 
is one-dimensional (spanned by the sum of the elements of the orbit). It follows that
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dimCE(η) = r2t − 1
pm

+ 1.

We now calculate the same quantity in another way. Let ai, i = 1, . . . , l, be the multi-
plicities of the l distinct eigenvalues of the linear transformation η. Then the matrix of 
η in some basis is block-diagonal consisting of l scalar blocks with different eigenvalues 
on the diagonals. The centralizer of this matrix in the full matrix algebra consists of all 
block-diagonal matrices with the same block-partition. Therefore,

dimCE(η) =
l∑

i=1
a2
i .

Thus,

r2t − 1
pm

+ 1 =
l∑

i=1
a2
i .

If l = pm, there is nothing to prove. Suppose that l � pm − 1. Then, since 
∑l

i=1 ai = rt, 
we have

l∑
i=1

a2
i � l ·

(
rt

l

)2

= r2t

l
� r2t

pm − 1 ,

and as a result,

r2t − 1
pm

+ 1 =
l∑

i=1
a2
i � r2t

pm − 1 .

This is equivalent to saying that rt + 1 � pm. Using this inequality we now obtain that

rt =
l∑

i=1
ai �

l∑
i=1

a2
i = r2t − 1

pm
+ 1 = (rt − 1)(rt + 1)

pm
+ 1 � rt.

Therefore, all the inequalities are actually equalities, in particular, l = pm − 1. Thus, 
l � pm − 1 in all cases, as required. �

The following lemma readily follows from Lemma 3.2 and is a further variation on 
‘non-modular’ Hall–Higman type theorems. Similarly to Lemma 3.2, part (b) about the 
case of faithful action is a well-known result; see [32, Theorem 3.1] and [8, Theorem 4.1].

Lemma 3.3. Suppose that r is a prime, R is an r-group, and 〈ψ〉 is a cyclic group of order 
pk for a prime p �= r acting (not necessarily faithfully) by automorphisms on R such that 
the induced automorphism of R has order pm. Suppose that the semidirect product R〈ψ〉
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acts by linear transformations on a vector space V over a field K whose characteristic 
does not divide p · r, and suppose that V is a faithful KR-module.

(a) Then the minimal polynomial of ψ on V has degree at least pm − pm−1.
(b) If in addition k = m that is, ψ acts faithfully on R, then either the minimal poly-

nomial of ψ on V is xpk − 1, or there exist positive integers k0 � k and t such that 
rt = pk0 − 1 and if p = 2, then t = 1.

Note that in the case of rt = pk0 − 1 either r = 2 or p = 2 and r is a Mersenne prime.

Proof. (a) We can assume that the field K is algebraically closed, since the hypotheses 
of the lemma remain valid for R〈ψ〉 regarded as a group of linear transformations of the 
vector space obtained by extending the ground field, while the minimal polynomial of ψ
will be the same by Lemma 2.6(a).

Choose a minimal ψ-invariant r-subgroup M of R on which ψ acts with order pm, 
that is, on which ψpm−1 acts non-trivially. Then M is either an elementary abelian or 
a non-abelian special r-group, ψ acts irreducibly on M/[M, M ], and ψpm−1 acts non-
trivially on M/[M, M ] and trivially on [M, M ] (see [7, Theorem 5.3.7]). Since ψ acts 
irreducibly on M/[M, M ], in particular, CM (ψpm−1) = [M, M ] so that M = [M, ψpm−1 ], 
and all orbits of ψ on M/[M, M ] \ {1} have length pm.

Since the characteristic of the field K is coprime to p · r, the KM〈ψ〉-module V is 
completely reducible. Let W be an irreducible KM〈ψ〉-submodule of V on which the sub-
group M = [M, ψpm−1 ] acts non-trivially. Applying Clifford’s theorem [7, Theorem 3.4.1]
with respect to the normal subgroup M we decompose W = W1 ⊕ · · · ⊕Wps into a sum 
of homogeneous KM -submodules, which are transitively permuted by 〈ψ〉 with 〈ψps〉
being the stabilizer of W1 in 〈ψ〉. Then 〈ψps〉 is also the stabilizer of every Wi since 〈ψ〉
is abelian. Note that ps � pm. Let L be the image of M in its action on W1. Then W1
is an irreducible KL〈ψps〉-module and a homogeneous KL-module.

If L is abelian, then it is cyclic and central, so that [L, ψps ] = 1 and therefore 
[Lψi

, ψps ] = 1 for all i and [L, ψps ] acts trivially on W , whence ps = pm. Then ψ
has minimal polynomial on V of degree at least pm by Lemma 2.6(e).

If L is not abelian, then it is an extra-special r-group, ψps acts trivially on Z(L) and 
has regular orbits of length |ψps |/|ψpm | = pm−s on L/Z(L). Thus the semidirect product 
L〈ψps〉 and the KL〈ψps〉-module W1 satisfy the hypotheses of Lemma 3.2(a), by which 
the minimal polynomial of ψps on W1 has degree at least pm−s − 1. If m > s, then by 
Lemma 2.6(e) the minimal polynomial of ψ has degree at least ps(pm−s − pm−s−1) =
pm−pm−1. If m = s, then the same lemma gives the lower bound ps·1 = pm � pm−pm−1. 
Thus, the degree of the minimal polynomial of ψ on V is at least pm− pm−1 in all cases, 
and part (a) is proved.

(b) This part is basically known from the papers of Shult and Gross, see [32, Theo-
rem 3.1] and [8, Theorem 4.1], but for completeness we also derive this result here from 
Lemma 3.2(b). Assuming k = m (that is, ψ acts faithfully on R), we repeat the above 
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arguments. When L is abelian, we obtain that ψ has minimal polynomial on V of degree 
at least pk by Lemma 2.6(e), so it must be xpk−1. When L is extraspecial, the semidirect 
product L〈ψps〉 and the KL〈ψps〉-module W1 satisfy the hypotheses of Lemma 3.2(b), 
by which either the minimal polynomial of ψps has degree at least pm−s or rt = pk−s−1
and if p = 2, then t = 1. In the first case, by Lemma 2.6(e) the minimal polynomial of ψ
has degree at least pspk−s = pk and then it must be xpk −1. The second case corresponds 
to the other alternative in part (b). �
4. Reduction to an automorphism of bounded order. Proof of Theorem 1.4

In this section we perform a reduction of the proofs of Theorems 1.4 and 1.5 to the case 
where the order of a fixed-point-free automorphism ϕ satisfying an elementary abelian 
identity f(x) ∈ Z[x] is bounded in terms of deg(f(x)). At the end of this section we 
finish the proof of Theorems 1.4.

Since in Theorems 1.4 and 1.5 we need to bound the Fitting height and F (G) =⋂
q Oq′,q(G), it is sufficient to bound the Fitting height of G/Oq′,q(G) for every prime q. 

Here Oq′ is the largest normal q′-subgroup, and Oq′,q(G) is the inverse image of the 
largest normal q-subgroup of G/Oq′(G).

Proposition 4.1. Let G be a (soluble) finite group admitting a fixed-point-free automor-
phism ϕ satisfying an elementary abelian identity f(x) ∈ Z[x] such that f(x) does 
not vanish modulo any prime divisor of |G|. Let q be a prime dividing |G|, and let 
Ḡ = G/Oq′,q(G). Then the order of the automorphism ϕ|Ḡ/F (Ḡ) induced by ϕ on Ḡ/F (Ḡ)
is bounded in terms of deg(f(x)), namely,

|ϕ|Ḡ/F (Ḡ)| � (2 deg(f(x)))2 deg(f(x)).

Moreover, the number α(|ϕ|Ḡ/F (Ḡ)|) of prime divisors of |ϕ|Ḡ/F (Ḡ)| counting multiplici-
ties is at most 4 · deg(f(x)).

Of course, a crude bound for α(|ϕ|Ḡ/F (Ḡ)|) immediately follows from a bound for 
|ϕ|Ḡ/F (Ḡ)|, but we included a sharper bound, which is easily obtained in the proof.

Note that the condition that the polynomial f(x) does not vanish modulo prime 
divisors of |G| is automatically satisfied in Theorem 1.4. Moreover, the definition of the 
set σ(f(x)) will ensure that this condition is also satisfied in Theorem 1.5. In what 
follows, when we will be using the fact that ϕ satisfies f(x) on some elementary abelian 
characteristic section, it will only matter that f(x) reduced modulo some prime is non-
zero, so the minimal polynomial of ϕ regarded as a linear transformation of this section 
has degree at most deg(f(x)).

Proof. The quotient Ḡ = G/Oq′,q(G) acts faithfully on the Frattini quotient V of 
Oq′,q(G)/Oq′(G). Let ϕ̄ be the induced automorphism of V Ḡ, which is fixed-point-free 
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by Lemma 2.3. Let p be a prime divisor of |ϕ̄| and let |ϕ̄| = spp
kp for sp coprime to p. 

For brevity let us write simply s = sp and k = kp when we focus on this prime p. Note 
that it may happen that p = q or p �= q.

We write ψ = ϕ̄s, which is a generator of the Sylow p-subgroup of 〈ϕ̄〉. Let pm be 
the order of the automorphism induced by ψ on a ϕ̄-invariant Hall p′-subgroup H of Ḡ, 
which exists by Lemma 2.2.

Lemma 4.2. The order of the automorphism of Ḡ/F (Ḡ) induced by ψ is at most pm; in 
particular, if ψ centralizes a ϕ̄-invariant Hall p′-subgroup of Ḡ, then ψ acts trivially on 
Ḡ/F (Ḡ).

Proof. We claim that ψpm ∈ Op(Ḡ〈ϕ̄〉) � F (Ḡ〈ϕ̄〉). Indeed, by definition ψpm centralizes 
a ϕ-invariant Hall p′-subgroup H of Ḡ, as well as, obviously, the Hall p′-subgroup of 〈ϕ̄〉. 
Hence ψpm centralizes a Hall p′-subgroup H1 of Ḡ〈ϕ̄〉. Since Ḡ〈ϕ̄〉 = H1P , where P is 
a Sylow p-subgroup containing ψpm , all conjugates of ψpm belong to P and therefore 
generate a normal p-subgroup contained in Op(Ḡ〈ϕ̄〉). Thus, ψpm ∈ F (Ḡ〈ϕ̄〉), and since 
F (Ḡ) = Ḡ ∩ F (Ḡ〈ϕ̄〉), the order of the automorphism of Ḡ/F (Ḡ) induced by ψ is at 
most pm. �
Lemma 4.3. The number pm is bounded in terms of deg(f(x)), namely, pm � 2 deg(f(x)).

Proof. By Lemma 2.2 for every prime divisor r of |H| there is a ϕ̄-invariant Sylow r-
subgroup of H. Clearly, ψ must act as an automorphism of order pm on at least one such 
Sylow subgroup. Let R be a ψ-invariant Sylow r-subgroup of Ḡ for some prime r �= p on 
which ψ acts with order pm, that is, on which ψpm−1 acts non-trivially. The semidirect 
product R〈ψ〉 acts by linear transformations on V , and V is a faithful FqR-module. We 
claim that pm − pm−1 � deg(f(x)), which implies the required bound.

First suppose that r �= q. Then the action of the semidirect product R〈ψ〉 on V
gives rise to a Hall–Higman type situation, which may be ‘modular’ when p = q, or 
‘non-modular’ when p �= q.

In the ‘non-modular’ case p �= q we apply Lemma 3.3(a), by which the minimal 
polynomial of ψ on V has degree at least pm − pm−1. By Lemma 2.6(f) the minimal 
polynomial of ϕ on V must also have degree at least pm − pm−1. Since ϕ satisfies f(x)
on V , we obtain that pm − pm−1 � deg(f(x)).

In the ‘modular’ case p = q, we apply Theorem 3.1 after certain preparation. Since 
Ḡ = G/Op′,p(G) and V is the Frattini quotient of Op′,p(G)/Op′(G), while 〈ψ〉 is a p-
group, we have Op′(V Ḡ〈ψ〉) = 1. Since 〈ψ〉/〈ψpm〉 acts faithfully on a Hall p′-subgroup 
of Ḡ, while ψpm ∈ Op(Ḡ〈ψ〉) as shown in the proof of Lemma 4.2, we further obtain

Op′,p(V Ḡ〈ψ〉) = Op(V Ḡ〈ψ〉) = V 〈ψpm〉.

Let U be the Frattini quotient of Op′,p(V Ḡ〈ψ〉)/Op′(V Ḡ〈ψ〉), on which the group 
V Ḡ〈ψ〉/Op′,p(V Ḡ〈ψ〉) acts faithfully by conjugation satisfying the hypotheses of Theo-
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rem 3.1. Since the order of the automorphism of U induced by ψ is pm, by Theorem 3.1
the minimal polynomial of ψ on U has degree at least pm − pm−1. We have

U = (V/[V, ψpm

]) × (〈ψpm〉/〈ψpm+1〉).

Since both factors of U are ψ-invariant and 〈ψpm〉/〈ψpm+1〉 is centralized by ψ, the 
minimal polynomial of ψ on the first factor, and therefore on V , must also have degree 
at least pm − pm−1. By Lemma 2.6(f) the minimal polynomial of ϕ̄ on V must have 
degree at least pm− pm−1. Since ϕ̄ satisfies f(x) on the characteristic abelian section V , 
we obtain that pm − pm−1 � deg(f(x)).

Now suppose that r = q. In this case R is a q-group, and we consider the action of the 
semidirect product R〈ψ〉 on F (Ḡ), which is a nilpotent q′-group containing its centralizer. 
Since R acts faithfully on F (Ḡ), there is some Sylow t-subgroup T of F (Ḡ) for t �= r on 
which the subgroup [R, ψpm−1 ] acts non-trivially. Let R̃ = R/CR(T ). Note that by the 
choice of T the automorphism induced by ψ on R̃ has order pm. Then the action of the 
semidirect product R̃〈ψ〉 on the Frattini quotient U of T again gives rise to a Hall–Higman 
type situation, which may be ‘modular’ when p = t, or ‘non-modular’ when p �= t. Using 
the same Hall–Higman type arguments as above, based either on Lemma 3.3(a) or on 
Theorem 3.1, we obtain in similar fashion that pm − pm−1 � deg(f(x)).

So in all of the above cases, we have shown that pm − pm−1 � deg(f(x)), and this 
implies the required bound. Indeed, if m = 0, then pm � 2 deg(f(x)). If m = 1, then 
pm � pm−1 + deg(f(x)) = 1 + deg(f(x)) � 2 deg(f(x)). If m � 2, then pm = ppm−1 �
2(p − 1)pm−1 � 2 deg(f(x)). �

We return to the proof of the proposition. Let pm1
1 · · · pml

l be the prime factoriza-
tion of |ϕ|Ḡ/F (Ḡ)| with distinct prime divisors p1, . . . , pl and corresponding multiplicities 
m1, . . . , ml > 0. Lemmas 4.2 and 4.3 then give us the bound

pmi
i � 2 deg(f(x))

for each i ∈ {1, . . . , l}, and therefore the bound |ϕ|Ḡ/F (Ḡ)| � (2 deg(f(x)))2 deg(f(x)).
Furthermore, Theorem 2.10 gives us the bound

l � π(2 deg(f(x))) < 1.25506 · (2 deg(f(x)))/ ln(2 deg(f(x))),

where π(·) is the usual prime counting function. For each i ∈ {1, . . . , l}, we also have the 
obvious bound mi � log2(2 deg(f(x))) = ln(2)−1 · ln(2 deg(f(x))). Altogether, we obtain

α(|ϕ|Ḡ/F (Ḡ)|) = m1 + · · · + ml

� ln(2)−1 · ln(2 deg(f(x))) · l
� ln(2)−1 · ln(2 deg(f(x))) · 1.25506 · (2 deg(f(x)))/ ln(2 deg(f(x)))

� 4 · deg(f(x)). �
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Proof of Theorem 1.4. Recall that G is a finite (soluble) group admitting a fixed-
point-free automorphism ϕ satisfying an elementary abelian identity f(x) ∈ Z[x], 
where f(x) is a primitive polynomial, and we need to obtain a bound for the Fit-
ting height of G in terms of deg(f(x)). Let q be any prime dividing |G| and define 
D := (G/Oq′,q(G))/F (G/Oq′,q(G)). By Proposition 4.1, we have α(|ϕ|D|) � 4 deg(f(x)). 
Then by Dade’s theorem [4] the Fitting height h(D) of D is bounded in terms of α(|ϕ|D|), 
and Jabara’s paper [17] gives the bound 7 · α(|ϕ|D|)2. So, for each such prime q, we ob-
tain h(D) � 112 · deg(f(x))2 and therefore h(G/Oq′,q(G)) � 1 + 112 · deg(f(x))2. Since 
F (G) =

⋂
q Oq′,q(G), we obtain the required bound h(G) � 2 + 112 · deg(f(x))2 for the 

Fitting height of G. �
5. Proof of Theorem 1.5

In Theorem 1.5, for a finite soluble group G with a fixed-point-free automorphism ϕ
satisfying an elementary abelian identity f(x) ∈ Z[x], we need to obtain a bound on 
the Fitting height of G in terms of irr(f(x)). As a first step, we use Proposition 4.1 to 
perform a reduction to the case where the order of ϕ is bounded in terms of deg(f(x)). 
Then, roughly speaking, we can pass to a fixed-point-free automorphism ϕ satisfying 
the elementary abelian identity gcd(f(x), x|ϕ| − 1), which is a product of cyclotomic 
polynomials the number of which is at most irr(f(x)). First we deal with this situation 
in the following proposition, which requires imposing additional conditions on the prime 
divisors of |G|. Then we finish the proof of Theorem 1.5 after defining a finite set of 
‘forbidden’ prime divisors of |G| depending only on f(x).

Proposition 5.1. Let G be a finite (soluble) group admitting a fixed-point-free automor-
phism ϕ satisfying an elementary abelian identity f(x) that is a product of c cyclotomic 
polynomials: f(x) = Φn1(x) · · ·Φnc

(x). Suppose that

gcd(|G|, 2) = gcd(|G|, |ϕ|!) = gcd(|G|, n1 · · ·nc) = 1.

Then the Fitting height h(G) of G is at most c2.

Note that the coprimeness conditions on the order of G ensure that ϕ is a coprime 
automorphism of G for which no exceptional situations arise in the ‘non-modular’ Hall–
Higman type arguments for automorphisms induced by powers of ϕ.

Proof. We proceed by induction on the pairs (c, α(|ϕ|)) ordered lexicographically. We 
formally include the case c = 0 as the base of the induction, which means that f(x) = 1. 
By the definition of elementary abelian identity we then have u = 1 for every u ∈ S in 
every characteristic abelian section S of G, which of course means that G = 1, so that 
indeed h(G) = 0 � 02. We may therefore assume that c � 1.

First we show that the number of distinct primes dividing the order of ϕ can be 
assumed to be at most c, by way of possibly replacing ϕ with another fixed-point-free 



E.I. Khukhro, W.A. Moens / Journal of Algebra 608 (2022) 755–773 769
automorphism. Suppose that for some prime p the cyclotomic polynomial Φp(x) does not 
occur in the factorization of f(x). Then, since the eigenvalues of ϕ on every elementary 
abelian characteristic section S of G are roots of f(x) and gcd(|G|, ni) = 1 for every factor 
Φni

(x) of f(x), the power ϕp is also a fixed-point-free automorphism of S. Therefore 
ϕp is a fixed-point-free automorphism of G. By Lemma 2.7(a), the automorphism ϕp

satisfies the elementary abelian identity 
∏c

i=1 Φni/gcd(ni,p)(x) with the same number 
of cyclotomic factors (or possibly fewer if repeats appeared). Clearly, the coprimeness 
hypotheses of Proposition 5.1 on |G| also hold with respect to ϕp instead of ϕ. Since 
α(|ϕp|) = α(|ϕ|) − 1, induction completes the proof. Hence we can assume from the 
outset that for every prime p dividing |ϕ|, the cyclotomic polynomial Φp(x) does occur 
in the factorization of f(x), and that therefore the number of distinct primes dividing 
|ϕ| is at most c.

For every prime q dividing |G|, consider Ḡ = G/Oq′,q(G) as above. It is sufficient 
to prove that h(Ḡ) � c2 − 1 for every q, as then the Fitting height of G will be at 
most c2 because F (G) =

⋂
q Oq′,q(G). We fix the prime q for what follows. The group 

Ḡ acts faithfully on the Frattini quotient V of Oq′,q(G)/Oq′(G). Let ϕ̄ be the induced 
automorphism of V Ḡ. Let p be a prime divisor of |ϕ̄| and let |ϕ̄| = spp

kp for sp coprime 
to p. For brevity we write s = sp and k = kp when we focus on this prime p, and let 
ψ = ϕ̄s be a generator of the Sylow p-subgroup of 〈ϕ̄〉.

There must be some factor Φnj
(x) of f(x) with pk dividing nj , since pk obviously 

divides the order of ϕ. Indeed, the (cyclic) Sylow p-subgroup of 〈ϕ〉 must act faithfully 
on some characteristic elementary abelian section S of G by Lemma 2.1. Then the auto-
morphism induced by ϕ on S has some eigenvalues of order divisible by pk and therefore 
at least one of the factors Φnj

(x) of f(x) must have nj divisible by pk by Lemma 2.7(b).
If the automorphism induced by ψ on Ḡ/F (Ḡ) has order less than pk = |ψ|, then 

ϕ has no primitive roots of unity of order divisible by pk on any elementary abelian 
characteristic section of Ḡ/F (Ḡ). Then the polynomial f(x)/Φnj

(x), with nj divisible 
by pk, is an elementary abelian identity of the automorphism of Ḡ/F (Ḡ) that is induced 
by ϕ. Since f(x)/Φnj

(x) has c − 1 cyclotomic factors, by the induction hypothesis the 
Fitting height of Ḡ/F (Ḡ) is at most (c − 1)2, so that the Fitting height of Ḡ is at most 
(c − 1)2 + 1 and therefore at most c2, as required, since c � 1.

Therefore we can assume that the automorphism induced by ψ on Ḡ/F (Ḡ) has the 
same order pk as on V Ḡ. This condition means that an application of the Hall–Higman 
type arguments will result in the minimal polynomial of ψ being xpk − 1, as will follow 
from Lemma 3.3(b) in view of the absence of exceptional situations.

Namely, choose a ψ-invariant Sylow r-subgroup R of Ḡ for some prime r �= p on which 
ψ acts with order pk, that is, on which ψpk−1 acts non-trivially. The semidirect product 
R〈ψ〉 acts by linear transformations on V , and V is a faithful FqR-module.

First suppose that r �= q. Then the action of the semidirect product R〈ψ〉 on V gives 
rise to a ‘non-modular’ Hall–Higman type situation, since p �= q by the hypotheses on 
|G|. Since ψ acts faithfully on R, we can apply Lemma 3.3(b), by which the minimal 
polynomial of ψ on V is xpk − 1 in view of the hypotheses on |G|.
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Now suppose that r = q. In this case, R is a q-group, and we consider the action 
of the semidirect product R〈ψ〉 on F (Ḡ), which is a nilpotent q′-group containing its 
centralizer. Since R acts faithfully on F (Ḡ), there is some Sylow t-subgroup T of F (Ḡ)
for t �= r on which the subgroup [R, ψpk−1 ] acts non-trivially. Let R̃ = R/CR(T ). Note 
that by the choice of T the automorphism induced by ψ on R̃ has order pk. Then the 
action of the semidirect product R̃〈ψ〉 on the Frattini quotient U of T again gives rise 
to a ‘non-modular’ Hall–Higman type situation, since p �= t. Applying Lemma 3.3(b) we 
obtain in similar fashion that the minimal polynomial of ψ on T/Φ(T ) is xpk − 1.

Thus, in any case, there is an elementary abelian characteristic section S of V Ḡ on 
which the minimal polynomial of ψ is xpk − 1. We regard S as a vector space over a 
finite field, which we extend to an algebraically closed one. Since the automorphism ϕ̄ is 
of order coprime to the characteristic, it is diagonalizable. Since the minimal polynomial 
of ψ on S is xpk − 1, the eigenvalues of ψ = ϕ̄s are all primitive pi-th roots of unity 
for all i = 0, 1, 2, . . . , k. At the same time, these eigenvalues are the s-th powers of the 
eigenvalues of ϕ̄. Hence the eigenvalues of ϕ̄ include primitive roots of unity for which the 
highest power of p dividing their order ranges over all values p0, p1, p2, . . . , pk. Since ϕ̄
satisfies the polynomial f(x) =

∏c
i=1 Φni

(x), there must be different cyclotomic factors 
Φni

(x) in f(x) such that the highest power of p dividing the ni ranges over all values 
p0, p1, p2, . . . , pk. Therefore the exponent k = kp of the highest power of p dividing |ϕ̄|
satisfies k � c − 1.

Since the number of distinct primes dividing |ϕ| is at most c by our assumption, we 
obtain that α(|ϕ̄|) � c(c −1). By the Shult–Gross–Berger Theorem 2.4, the Fitting height 
of V Ḡ = V (G/Oq′,q) is at most c(c − 1), so obviously the Fitting height of G/Oq′,q) is 
also at most c(c − 1). Since this is true for every q, the Fitting height of G/F (G) is also 
at most c(c − 1). As a result, the Fitting height of G is at most c(c − 1) + 1 � c2, as 
required, since c � 1. �

We now introduce the finite set of primes σ(f(x)) that is used in Theorem 1.5. 
Let Res(a(x), b(x)) be the resultant of polynomials a(x), b(x) ∈ Z[x]. Recall that 
Res(a(x), b(x)) is an integer, which is equal to 0 exactly when deg(gcd(a(x), b(x))) > 0. 
Note also that Res(a(x), b(x)) = a(x)a1(x) + b(x)b1(x) for some a1(x), b1(x) ∈ Z[x] and 
therefore Res(a(x), b(x)) belongs to the ideal generated by a(x) and b(x).

Definition 5.2. Let f(x) = a0 + a1x + · · · + adx
d ∈ Z[x] be a non-zero polynomial of 

degree d := deg(f(x)) with content a := gcd(a0, . . . , ad). Using the auxiliary polynomials 
u(x) := x(2d)2d! − 1 and v(x) := gcd(f(x), u(x)) we define the (non-zero) integer

ρ := Res(f(x)/v(x), u(x)/v(x)).

We then define σ(f(x)) to consist of the prime divisors of the (non-zero) integer

(2d)2d! · a · ρ.
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Recall that we denote by irr(f(x)) the number of different irreducible divisors of f(x), 
counted without multiplicity.

We will only need the following four properties of these invariants.

Lemma 5.3. Let f(x) ∈ Z[x] \{0} and let p be a prime not in σ(f(x)). Then the following 
hold.

(a) The prime p is odd and p > (2d)2d.
(b) The polynomial f(x) does not vanish modulo p.
(c) If v(x) �= 1, then v(x) = Φn1(x) · · ·Φnc

(x) with gcd(p, n1 · · ·nc) = 1 and c �
irr(f(x)).

(d) The polynomial ρ · v(x) is in the ideal of Z[x] generated by f(x) and u(x).

Proof. (a) This is true because p is coprime to (2d)2d!.
(b) This holds because p is coprime to the content a of f(x).
(c) This follows from the definitions of u(x) = x(2d)2d! − 1 and v(x) = gcd(f(x), u(x))

and part (a).
(d) Note that ρ is in the ideal of Z[x] generated by f(x)/v(x) and u(x)/v(x), and 

therefore the polynomial ρ · v(x) is in the ideal of Z[x] generated by f(x) and u(x). �
Proof of Theorem 1.5. Recall that G is a finite (soluble) group admitting a fixed-point-
free automorphism ϕ satisfying an elementary abelian identity f(x) ∈ Z[x] \ {0} and 
that G is a σ(f(x))′-group. We need to show that h(G) � 2 + irr(f(x))2. We continue to 
use the notation of Definition 5.2 and we distinguish between two cases: v(x) �= 1 and 
v(x) = 1.

We first consider the case v(x) �= 1. According to Lemma 5.3(c), there are nonnegative 
integers c and n1, . . . , nc such that v(x) = Φn1(x) · · ·Φnc

(x) and c � irr(f(x)). Let q be 
any prime divisor of |G| and define the quotients Ḡ := G/Oq′,q(G) and D := Ḡ/F (Ḡ), 
as before. It now suffices to verify that v(x) is an elementary abelian identity of the 
fixed-point-free automorphism ϕ|D of D induced by ϕ and that

gcd(|D|, 2) = gcd(|D|, |ϕ|D|!) = gcd(|D|, n1 · · ·nc) = 1.

Indeed, then we will be able to apply Proposition 5.1 to D, ϕ|D, and v(x) in order to 
obtain the bound h(D) � c2 and therefore h(Ḡ) � 1 + c2. Since F (G) =

⋂
q Oq′,q(G), we 

will then obtain the required bound h(G) � 2 + c2 � 2 +irr(f(x))2 on the Fitting height 
of G, since c � irr(f(x)).

We first verify the coprimeness conditions. Clearly, gcd(|D|, 2) = 1, since G is a 
σ(f(x))′-group. According to Lemma 5.3(b), the polynomial f(x) does not vanish modulo 
any prime divisor of |G|. Therefore we can apply Proposition 4.1 to G, ϕ, and f(x) in 
order to obtain the bound |ϕ|D| � (2d)2d. By Lemma 5.3(a), every prime divisor p
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of |D| satisfies p > (2d)2d. Hence, gcd(p, |ϕ|D|!) = 1. By Lemma 5.3(c), we also have 
gcd(p, n1 · · ·nc) = 1.

To prove that v(x) is an elementary abelian identity of ϕ|D, we first recall that f(x)
is elementary abelian identity of ϕ|D. Since |ϕ|D| � (2d)2d, the polynomial u(x) =
x(2d)2d! − 1 is also an elementary abelian identity of ϕ|D. By Lemma 2.8, the elementary 
abelian identities of ϕ|D form an ideal of Z[x]. By Lemma 5.3(d), the polynomial ρ ·v(x)
belongs to the ideal generated by f(x) and u(x); therefore ρ ·v(x) is an elementary abelian 
identity of ϕ|D. We have gcd(|D|, ρ) = 1, since ρ is a product of primes in σ(f(x)) and 
G is a (σ(f(x)))′-group by hypothesis. In accordance with Euclid’s algorithm, we have 
1 ∈ ρ ·Z[x] + |D| ·Z[x] and therefore also v(x) ∈ ρ ·v(x) ·Z[x] + |D| ·v(x) ·Z[x]. Clearly, |D|
is an elementary abelian identity of ϕ|D. As a result, v(x) is in the ideal of elementary 
abelian identities of ϕ|D, and the case v(x) �= 1 is complete as explained above.

Finally, we consider the case v(x) = 1. Suppose that, for some prime divisor q of |G|, 
the quotient D := (G/Oq′,q(G))/(F (G/Oq′,q(G))) is non-trivial. Then we again have the 
bound |ϕ|D| � (2d)2d by Proposition 4.1. The polynomial u(x) is therefore again an 
elementary abelian identity of ϕ|D, so that v(x) is again an elementary abelian identity 
of ϕ|D. Since v(x) = 1, the group D is therefore trivial. This contradiction shows that, 
for every prime divisor q of |G|, we have h(D) = 0 and therefore h(G/Oq′,q(G)) � 1. 
Since F (G) =

⋂
q Oq′,q(G), we obtain the required bound h(G) � 2 � 2 + irr(f(x))2 on 

the Fitting height of G. �
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