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1. Introduction

An automorphism ¢ of a group G is said to be fized-point-free if Cq(p) = 1, that
is, the only fixed point of ¢ is 1. By the celebrated theorem of Thompson [33], a finite
group with a fixed-point-free automorphism of prime order p is nilpotent (and the nilpo-
tency class is bounded in terms of p by Higman’s theorem [10], with the bound made
effective by Kreknin and Kostrikin [24,25]). Based on the classification of finite simple
groups, Rowley [31] proved the solubility of a finite group admitting a fixed-point-free
automorphism of any order (not necessarily coprime to |G|).

If a finite (soluble) group G admits a fixed-point-free automorphism ¢ of coprime
order, then the Fitting height of G is at most the composition length a(|p|) of (),
which is the best possible bound. In this most general form, this is a special case of
Berger’s theorem [3]. Earlier results under certain restrictions on the primes dividing ||
were obtained by Shult [32] and Gross [8]. Their papers contained important so-called
non-modular Hall-Higman type theorems (with Gross also referring to Dade’s seminar
notes of 1964).

A special case of Dade’s theorem [4] gives a bound for the Fitting height of G admitting
a fixed-point-free automorphism ¢ of non-coprime order. The bound furnished by Dade’s
theorem is exponential in a(|p|); a significant improvement to a quadratic bound was
recently obtained by Jabara [17].

There are also many results, starting from the papers of Thompson [34] and Dade [4],
on bounding the Fitting height of finite soluble groups in terms of fixed points and
orders of their (not necessarily cyclic) groups of automorphisms. We refer the reader to
the survey of Turull [35], who obtained some of the best results in this area.

Another important direction is studying groups with automorphisms satisfying cer-
tain identities. In particular, so-called splitting automorphisms ¢ (satisfying the identity
zz?e? T = 1) arise in connection with the Hughes subgroup and its general-
izations, and with periodic profinite groups [1,2,5,6,12,15,16,18-23,26,36].

In this paper we consider finite groups G admitting a fixed-point-free automorphism
¢ that satisfies an additional polynomial identity f(z) for an arbitrary polynomial
f(z) € Z[z]; see the precise definition below. Imposing this additional condition on
the automorphism is justified by obtaining upper bounds for the Fitting height of G
independent of a(]p|). Instead, we obtain bounds for the Fitting height of G depending
only on the degree of f(x) (Theorem 1.4) or on the number irr(f(x)) of different irre-
ducible factors in the decomposition of f(x) (Theorem 1.5). The bounds obtained in our
theorems are stronger than the known bound a(|¢]) for coprime automorphisms (or a
bound in terms of «a(]p|) in general) when deg f(x) or irr(f(x)) is small in comparison
with a(]¢|). Our result in terms of deg(f(x)) applies to any finite group G (with a natu-
ral and unavoidable condition on the polynomial f(x)). The result in terms of irr(f(x))
applies to all finite o’-groups, where o = o(f(z)) is a finite set of primes depending only

on f(x).
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Earlier this approach to the study of finite groups with fixed-point-free automorphisms
was proposed by the second author [27-29].

We now pass to precise definitions and statements of the results. Let ¢ be an auto-
morphism of a group G.

Definition 1.1. We say that a polynomial f(z) = ag + a1z + -+ + agr? € Z[z] is an
ordered identity of o if

gh - (gP)1 - (g¥) =1 for all g € G.

When G is an abelian group, the order of the factors here is unimportant, and then we
can simply say that f(z) is an identity of .

Definition 1.2. We say that a polynomial f(x) € Z[x] is an elementary abelian identity
of ¢ if f(z) is an identity of the automorphisms induced by ¢ on every characteristic
elementary abelian section of G. In this case, we also say that ¢ satisfies the elementary
abelian identity f(x).

It is clear that an ordered identity of ¢ is also an elementary abelian identity of ¢,
but the converse is not true in general.

Remark 1.3. If f(z) is an elementary abelian identity of ¢ € Aut G and S is an elementary
abelian p-group that is a characteristic section of G, then the Fj-linear transformation
induced by ¢ on S regarded as a vector space over [F,, is annihilated by the polynomial
f(z) (reduced modulo p) in the ordinary sense of linear algebra.

We further recall that a polynomial f(x) = ag + a1x + - -+ + aqz? € Z[x] is primitive
if its content ged(ag, ai,...,aq) is 1. We can now state our first result.

Theorem 1.4. Suppose that a finite (soluble) group G admits a fized-point-free automor-
phism satisfying an elementary abelian identity f(x) € Z[x], where f(x) is a primitive
polynomial. Then the Fitting height of G is at most 2 + 112 - deg(f(x))2.

Examples show that if we drop the condition that f(z) is primitive, then one cannot
obtain a bound for the Fitting height of G in terms of deg(f(x)). We conjecture that such
a bound could possibly be obtained for an arbitrary polynomial f(z) # 0 if “elementary
abelian identity” is replaced with the stronger “ordered identity”.

A stronger bound for the Fitting height is obtained for an arbitrary polynomial f(x)
under an additional restriction on the prime divisors of the order of the group. Recall
that if o is a set of primes, then a finite group G is a o’-group if |G| is not divisible by
any prime in o. Let irr(f(x)) denote the number of different irreducible factors of f(x)
in Z[x] (counted without multiplicities).
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Theorem 1.5. Suppose that a finite (soluble) group G admits a fized-point-free automor-
phism satisfying an elementary abelian identity f(x) € Z|x], where f(x) is a non-zero
polynomial. There is a finite set of primes o0 = o(f(x)) depending only on f(x) such that
if G is a o'-group, then the Fitting height of G is at most 2 + irr(f(z))?.

The set of primes o(f(x)) in this theorem is described explicitly in Definition 5.2.

Earlier the second author [28] proved that, for ordered identities f(x) with irreducible
polynomial f(z), Theorem 1.5 holds with a sharp bound 1 for the Fitting height (for a
different finite set of primes o(f(z))). In [29] the second author proved a result similar to
Theorem 1.5 bounding the Fitting height of G by the number of irreducible factors of f(x)
counting multiplicities for a certain class of polynomials f(z). The bound for the Fitting
height that we obtain in Theorem 1.5 may not be best-possible, but importantly it only
depends on the number of different irreducible factors irr(f(z)) and the theorem holds
for any non-zero polynomial f(x). The bound for the Fitting height in Theorem 1.4
is weaker, in terms of deg(f(z)), but the advantage is that it does not impose any
restrictions on the prime divisors of |G| provided that the polynomial f(z) is primitive
(for example, when f(z) is monic).

Let G be a finite (soluble) group admitting a fixed-point-free automorphism ¢ sat-
isfying an elementary abelian identity f(x) € Z[z]. The first step in the proof of both
Theorems 1.4 and 1.5 is to use Hall-Higman type theorems (with certain modifica-
tions) for obtaining a reduction to the situation where ¢ has order bounded in terms of
deg(f(z)). Then the proof of Theorem 1.4 follows by an application of a special case of
Dade’s theorem [4], or rather Jabara’s [17] recent improvement for the bound for the Fit-
ting height of a finite group admitting a fixed-point-free automorphism of not necessarily
coprime order.

In the proof of Theorem 1.5 it is the Shult—Gross—Berger theorem that is ultimately
applied after a reduction to the case of a (possibly different) coprime automorphism
such that the number «a(|¢|) of prime factors in |¢| counting multiplicities is bounded
in terms of irr(f(z)). This becomes possible after defining a ‘forbidden’ finite set of
primes o depending only on f(z) such that for o’-groups G the automorphism ¢ can be
assumed to be of coprime order and ‘non-exceptional’ in the sense of Hall-Higman type
theorems, while f(z) can be assumed to be a product of cyclotomic polynomials. Then
Hall-Higman type theorems are applied again to reduce to a situation where a(|g|) is
bounded in terms of irr(f(z)) and an application of the Shult—-Gross-Berger theorem
finishes the proof.

2. Preliminaries

Suppose that a group A acts by automorphisms on a group B. We use the usual
notation for commutators [b,a] = b~1b% and commutator subgroups [B, A] = ([b,a] |
b€ B, ac A), as well as for centralizers Cp(4) = {b € B |b* =bforalla € A} and
Cy(B) ={a € A|b* =bforallb e B} In particular, then A/C4(B) embeds in the
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automorphism group Aut B. If ¢ is an automorphism of a group G and S is a y-invariant

section of G, then we denote by ¢|s the automorphism induced by ¢ on S; sometimes

we denote the induced automorphism by the same letter when this causes no confusion.
We recall the well-known property of coprime actions.

Lemma 2.1. Let ¢ be an automorphism of coprime order of a finite group G. If N is
a normal p-invariant subgroup, then Cg/n(¢) = Ca(@)N/N. In particular, if ¢ acts
trivially on every factor of some subnormal p-invariant series of G, then ¢ = 1.

It is also known that if ¢ is a coprime automorphism of a finite group G, then for every
prime g there is a p-invariant Sylow ¢-subgroup. It is important for us that a similar
property and an analogue of Lemma 2.1 hold for fixed-point-free automorphisms of any
order, not necessarily coprime to the order of the group. Henceforth we freely use the
fact that a finite group with a fixed-point-free automorphism is soluble [31].

Lemma 2.2 (/7, Theorem 10.1.2]). Let G be a finite (soluble) group admitting o fized-
point-free automorphism ¢, and let o be a set of primes. Then G has a p-invariant
Hall-o subgroup.

Proof. We only need to replace Sylow’s theorem with Hall’s theorem in the proof of [7,
Theorem 10.1.2] to obtain the lemma for arbitrary sets of primes 0. O

Lemma 2.3 ([7, Lemma 10.1.5]). Let G be a finite group and let ¢ be a fized-point-free
automorphism of G. If N is a normal @-invariant subgroup, then y induces a fived-point-
free automorphism of the quotient G/N.

The following result in its most general form is a special case of Berger’s theorem [3].
Earlier results under certain restrictions on the primes dividing |¢| were obtained by
Shult [32] and Gross [8]. Recall that «(n) denotes the number of prime divisors of n
counting multiplicities.

Theorem 2.4 (Shult—-Gross—Berger). If a finite (soluble) group G admits a fized-point-free
automorphism of coprime order n, then the Fitting height of G is at most a(n).

For fixed-point-free automorphisms of non-coprime order, the first (exponential)
bound for the Fitting height was obtained as a special case of a theorem by Dade [4];
the quadratic bound was recently obtained by Jabara [17, Corollary 1.2].

Theorem 2.5 (Dade—Jabara). If a finite (soluble) group G admits a fized-point-free auto-
morphism of order n, then the Fitting height of G is bounded in terms of a(n) and is at
most Ta(n)?.
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We collect in the next lemma well-known facts about minimal polynomials of linear
transformations (which are assumed monic). If ¢ is an automorphism of a vector space
V over a field F, we regard V as a right F(p)-module.

Lemma 2.6. Suppose that ¢ is an automorphism of a vector space V' over a field K.

(a) If ¢ is regarded as a linear transformation of the vector space V @ K obtained by
extending the ground field to K1, then the minimal polynomial remains the same.

(b) If ¢ is diagonalizable, then the degree of the minimal polynomial of ¢ is equal to the
number of different eigenvalues of .

(¢) There is a vector v € V such that the minimal polynomial of ¢ for v, that is, the
polynomial g(x) of smallest degree such that vg(p) =0, is the same as the minimal
polynomial of ¢ for the whole space V.

(d) The degree of the minimal polynomial of ¢ is equal to the mazimum dimension of
the subspace spanned by an orbit of a vector under the action of ().

(e) fV=Vi® &V, where Vo = Viiq fori=1,....k —1 and Vyp = V1, then
the degree of the minimal polynomial of ¢ on'V is k- d, where d is the degree of the
minimal polynomial of the restriction " |y, .

(f) The degree of the minimal polynomial of any power ¢* is at most the degree of the
manimal polynomial of .

Proof. All these properties are well-known, but we still indicate some references.
(a) See [11, Ch. 6, page 192].
(b) This is well known.
(c) See [11, Ch. 7, Corollary of Theorem 3, page 237].
(d) This follows from (c).
(e) This follows from (d).
(f) This follows from (d). O

Recalling Definition 1.1 we can say that a linear transformation ¢ of a vector space
satisfies an identity f(z) € Z[z] if ¢ is annihilated by f(x) (reduced in the ground field).

Lemma 2.7. Let ¢ be an automorphism of finite order |p| of a wvector space V. over
a field of characteristic q coprime to |¢|. Suppose that ¢ satisfies the identity f(x) =
[I;_, ®n,(z), where the ®,,,(x) are some cyclotomic polynomials such that ged(g,n;) = 1.
(a) For any s € N the power ¢ satisfies the identity [];_, D, /ecd(ni,s) (T).

(b) If || is divisible by a power of a prime p*, then one of the integers n; is divisible by

P

Proof. Let V be the vector space obtained from V by extension of the ground field to
an algebraically closed field K, so that ¢ naturally becomes a K-linear transformation
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of V. Since the order of  is coprime to the characteristic, the transformation ¢ of finite
order is diagonalizable over K. The eigenvalues of ¢ are roots of f(x) (regarded as a
polynomial in K{z]).

(a) The eigenvalues of ¢* are the s-th powers of the roots of o, and therefore they are
roots of [Ti—1 @n,/ged(ns,s) (). Hence ¢° satisfies the polynomial [T;_; @, /gcd(n;,s) () on
V' and therefore also on V.

(b) If |¢]| is divisible by a power of a prime p*, then at least one of the eigenvalues
of ¢ has multiplicative order divisible by p* and therefore can be a root of a cyclotomic
polynomial ®,,.(x) only if n; is divisible by p*. O

Lemma 2.8. Let ¢ be an automorphism of a group G. Then the elementary abelian iden-
tities of ¢ form an ideal of Z]x].

Proof. Let f(x),g(x) € Z[z] be elementary abelian identities of ¢, and let h(z) € Z[x].
Let S be a characteristic elementary abelian section of G regarded as a right Z{p)-
module. Then by definition z(f(¢) + g(¢)) =0+ 0 = 0 and z(f(p)h(p)) = Oh(p) =0
for all z € S. Thus, both f(z) + g(z) and f(x)h(z) are elementary abelian identities of
. O

Remark 2.9. In what follows, we will consider polynomials in the ring Z[z] and also
polynomials with coefficients in a field of prime characteristic. Unless specifically stated
otherwise, every polynomial is assumed to belong to Z[x]. Moreover: divisors, greatest
common divisors, decompositions into irreducible factors, etc. are to be understood in
the ring Z[x], unless stated otherwise.

The prime number theorem, commonly attributed to Hadamard and de la Vallée
Poussin, establishes that the prime counting function 7(z) satisfies 7(z) ~ 2/ In(x), that
is, limg 0o m(2)/(z/In(z)) = 1. We will use the following estimate due to Rosser and
Schoenfeld [30, Corollary 1] that is valid for all 2 > 1.

Theorem 2.10. For all x > 1, we have 7(x) < 1.25506 - 2/ In(x).
3. Hall-Higman type theorems

In this section we lay out the foundations of further proofs by producing Hall-Higman
type theorems, both of ‘modular’ and ‘non-modular’ kind. First we state the celebrated
Hall-Higman Theorem B, which is of ‘modular’ kind, dealing with the minimal polyno-
mial of an element of order p™ in a linear group over a field of characteristic p.

Theorem 3.1 (Hall and Higman [9, Theorem B]). Let H be a p-soluble linear group over
a field of characteristic p, with no normal p-subgroup greater than 1. If g is an element
of order p™ in H, then the minimal polynomial of g is (x — 1)¢ = 0, where d = p™,
unless there is an integer mg < m such that p™° — 1 is a power of a prime q for which
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a Sylow q-subgroup of H is non-abelian, in which case, if mg is the least such integer,
prTTe(pme —1) < d < p™.

m=1 in all

Note that the degree d of the minimal polynomial of g satisfies d > p™ — p
cases.

We now consider Hall-Higman type results in so-called ‘non-modular’ situations,
which analyse the minimal polynomial of an element of order p™ in a linear group
over a field of characteristic not equal to p.

2+ and (n) is a cyclic

Lemma 3.2. Suppose that L is an extra-special r-group of order r
group of order p* for a prime p # r acting (not necessarily faithfully) by automorphisms
on L such that the induced automorphism 1 of L has order p™, acts reqularly on the
set L/Z(L) \ {1} with all orbits of length p™, and centralizes Z(L). Suppose that the
semidirect product L{n) acts by linear transformations on a vector space V over an
algebraically closed field K whose characteristic does not divide p - r, and suppose that

V is an irreducible K L{n)-module and a faithful and homogeneous K L-module.

(a) Thenmn as a linear transformation of V' has at least p™ — 1 different eigenvalues, so
that the minimal polynomial of n on V has degree at least p™ — 1.

(b) If in addition k = m (that is, n acts faithfully on L), then either the minimal
polynomial of n on V is 2 — 1 orrt= p* —1and if p=2, thent =1.

Proof. Part (b) is the well-known result going back to the work of Dade, Gross, Shult,
who modified the Hall-Higman Theorem B in [9] for the ‘non-modular’ case; see, for
example, [8, Theorem 2.2] or [13, Satz V.17.13].

Part (a) does not seem to have appeared in the literature; its proof is similar to the
well-known proof for (b), which was really using only the number of eigenvalues of . We
write this modified proof in full for the benefit of the reader.

By [14, Lemma IX.2.5], V is an irreducible K L-module and has dimension dimg V =
rt as a vector space over K. Then the enveloping algebra E for L coincides with the
full matrix algebra [7, Theorem 3.6.2] and dimx E = r?!. The elements of Z(L) are
represented by scalar transformations and multiplication by such a transformation in £
is equivalent to multiplication by the corresponding field element. Therefore any set of
representatives of the r?! cosets of Z(L) forms a basis of the algebra E.

The element n naturally acts on E and we calculate the dimension of the centralizer
of nin E. Since n?" belongs to the centre of the semidirect product L(n) by hypothesis,
the subgroup (n?") is represented by scalar transformations and the action of () on E
factors through to the action of () = (n)/(n?"). Since 7 acts regularly on L/Z(L)\ {1}
with orbits of length p™, it acts regularly on the elements of some basis of E except
for one element of this basis that corresponds to Z(L) and belongs to Cg(n). In every
subspace of E spanned by a non-trivial orbit of 7 on this basis, the fixed point subspace
is one-dimensional (spanned by the sum of the elements of the orbit). It follows that
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rt—1
dim Cg(n) = pen +1.
We now calculate the same quantity in another way. Let a;, ¢ = 1,...,l, be the multi-

plicities of the ! distinct eigenvalues of the linear transformation 7. Then the matrix of
1 in some basis is block-diagonal consisting of [ scalar blocks with different eigenvalues
on the diagonals. The centralizer of this matrix in the full matrix algebra consists of all
block-diagonal matrices with the same block-partition. Therefore,

l

dim Cg(n) = Z a?.

Thus,

If [ = p™, there is nothing to prove. Suppose that [ < p”™ — 1. Then, since 22:1 a; =1,
we have

and as a result,

This is equivalent to saying that 7t 4+ 1 < p™. Using this inequality we now obtain that

l l 2t t t

-1 -1 1
T’t:E ai< a?:r pooy —|—1:<T )7(nr+>+]_<7’t
i=1 i=1 p p

Therefore, all the inequalities are actually equalities, in particular, [ = p"™ — 1. Thus,
Il > p™ —1in all cases, as required. O

The following lemma readily follows from Lemma 3.2 and is a further variation on
‘non-modular’ Hall-Higman type theorems. Similarly to Lemma 3.2, part (b) about the
case of faithful action is a well-known result; see [32, Theorem 3.1] and [8, Theorem 4.1].

Lemma 3.3. Suppose that r is a prime, R is an r-group, and () is a cyclic group of order
p¥ for a prime p # r acting (not necessarily faithfully) by automorphisms on R such that
the induced automorphism of R has order p™. Suppose that the semidirect product R(i))
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acts by linear transformations on a vector space V over a field K whose characteristic

does not divide p - r, and suppose that V is a faithful K R-module.

(a) Then the minimal polynomial of 1) on V has degree at least p™ — p™~1.

(b) If in addition k = m that is, ¥ acts faithfully on R, then either the minimal poly-
nomial of Y on V is aP* — 1, or there exist positive integers kg < k and t such that
rt=pko —1 and if p=2, thent=1.

Note that in the case of 7t = p*o — 1 either r = 2 or p = 2 and r is a Mersenne prime.

Proof. (a) We can assume that the field K is algebraically closed, since the hypotheses
of the lemma remain valid for R{¢) regarded as a group of linear transformations of the
vector space obtained by extending the ground field, while the minimal polynomial of v
will be the same by Lemma 2.6(a).

Choose a minimal t-invariant r-subgroup M of R on which ¢ acts with order p™,
that is, on which z/ﬂ’mfl acts non-trivially. Then M is either an elementary abelian or
a non-abelian special r-group, ¥ acts irreducibly on M/[M, M], and »P" " acts non-
trivially on M/[M, M| and trivially on [M, M] (see [7, Theorem 5.3.7]). Since 1 acts
irreducibly on M /[M, M], in particular, Cps (P ) = [M, M] so that M = [M, " '],
and all orbits of ¥ on M/[M, M]\ {1} have length p™.

Since the characteristic of the field K is coprime to p - r, the KM (1))-module V is
completely reducible. Let W be an irreducible K M (1))-submodule of V' on which the sub-
group M = [M, w”mil] acts non-trivially. Applying Clifford’s theorem [7, Theorem 3.4.1]
with respect to the normal subgroup M we decompose W = W @ --- @ W) into a sum
of homogeneous K M-submodules, which are transitively permuted by () with (1/?")
being the stabilizer of Wi in (¢). Then (1)P") is also the stabilizer of every W; since (1)
is abelian. Note that p® < p™. Let L be the image of M in its action on Wj. Then W;
is an irreducible K L{¢/?")-module and a homogeneous K L-module.

If L is abelian, then it is cyclic and central, so that [L,4?"] = 1 and therefore
[L‘/’i,wps] = 1 for all 4 and [L,%?"] acts trivially on W, whence p° = p™. Then 1)
has minimal polynomial on V of degree at least p™ by Lemma 2.6(e).

If L is not abelian, then it is an extra-special r-group, ¥?" acts trivially on Z (L) and
has regular orbits of length [¢?"|/|?" | = p"™~* on L/Z(L). Thus the semidirect product
L{?") and the K L{1)?")-module W satisfy the hypotheses of Lemma 3.2(a), by which
the minimal polynomial of ¥?° on W; has degree at least p~* — 1. If m > s, then by
—pmTeTh) =
p™ —pm_l. If m = s, then the same lemma gives the lower bound p*-1 = p™ > p™ —p

Lemma 2.6(e) the minimal polynomial of ¢ has degree at least p*(p™*

m—1

™1 in all cases,

Thus, the degree of the minimal polynomial of ¥ on V' is at least p™ —p
and part (a) is proved.

(b) This part is basically known from the papers of Shult and Gross, see [32, Theo-
rem 3.1] and [8, Theorem 4.1], but for completeness we also derive this result here from

Lemma 3.2(b). Assuming k = m (that is, ¥ acts faithfully on R), we repeat the above
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arguments. When L is abelian, we obtain that ¢ has minimal polynomial on V' of degree
at least p* by Lemma 2.6(e), so it must be 2P" —1. When L is extraspecial, the semidirect
product L(y?") and the K L(1?")-module W satisfy the hypotheses of Lemma 3.2(b),
by which either the minimal polynomial of 17" has degree at least p™~* or r* = pF=5 —1
and if p = 2, then ¢t = 1. In the first case, by Lemma 2.6(e) the minimal polynomial of v

k—s

has degree at least p°p = p¥ and then it must be 2P" — 1. The second case corresponds

to the other alternative in part (b). O
4. Reduction to an automorphism of bounded order. Proof of Theorem 1.4

In this section we perform a reduction of the proofs of Theorems 1.4 and 1.5 to the case
where the order of a fixed-point-free automorphism ¢ satisfying an elementary abelian
identity f(z) € Z[z] is bounded in terms of deg(f(z)). At the end of this section we
finish the proof of Theorems 1.4.

Since in Theorems 1.4 and 1.5 we need to bound the Fitting height and F(G) =
N, Oq,q(G), it is sufficient to bound the Fitting height of G/Oy,4(G) for every prime g.
Here Oy is the largest normal ¢’-subgroup, and Oy 4(G) is the inverse image of the
largest normal g-subgroup of G/O4 (G).

Proposition 4.1. Let G be a (soluble) finite group admitting a fixed-point-free automor-
phism ¢ satisfying an elementary abelian identity f(x) € Zlx] such that f(x) does
not vanish modulo any prime divisor of |G|. Let q be a prime dividing |G|, and let
G = G/Oy 4(G). Then the order of the automorphism ?la/r(a) induced by ¢ on G/F(G)
is bounded in terms of deg(f(x)), namely,

[ola e < (2deg(f(x)))? eV D),

Moreover, the number a(|¢|g,pq)l) of prime divisors of [plq pa| counting multiplici-
ties is at most 4 - deg(f(x)).

Of course, a crude bound for a(|¢|g,pe|) immediately follows from a bound for
lola / F(é)|, but we included a sharper bound, which is easily obtained in the proof.

Note that the condition that the polynomial f(z) does not vanish modulo prime
divisors of |G| is automatically satisfied in Theorem 1.4. Moreover, the definition of the
set o(f(x)) will ensure that this condition is also satisfied in Theorem 1.5. In what
follows, when we will be using the fact that ¢ satisfies f(x) on some elementary abelian
characteristic section, it will only matter that f(z) reduced modulo some prime is non-
zero, so the minimal polynomial of ¢ regarded as a linear transformation of this section
has degree at most deg(f(x)).

Proof. The quotient G = G/Oy 4(G) acts faithfully on the Frattini quotient V of
O4.4(G)/Oy(G). Let % be the induced automorphism of VG, which is fixed-point-free
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by Lemma 2.3. Let p be a prime divisor of |¢| and let |p| = sppkp for s, coprime to p.
For brevity let us write simply s = s, and k = k, when we focus on this prime p. Note
that it may happen that p = q or p # gq.

We write ¢ = ¢°, which is a generator of the Sylow p-subgroup of (p). Let p™ be
the order of the automorphism induced by v on a @-invariant Hall p’-subgroup H of G,
which exists by Lemma 2.2.

Lemma 4.2. The order of the automorphism of G/F(G) induced by v is at most p™; in
particular, if 1 centralizes a @-invariant Hall p'-subgroup of G, then v acts trivially on

G/F(G).

Proof. We claim that ¢y € O,(G(p)) < F(G(@)). Indeed, by definition ¢?" centralizes
a p-invariant Hall p’-subgroup H of G, as well as, obviously, the Hall p’-subgroup of ().
Hence ¢?" centralizes a Hall p’-subgroup H; of G{(g). Since G(p) = H; P, where P is
a Sylow p-subgroup containing ¥?", all conjugates of 1/?" belong to P and therefore
generate a normal p-subgroup contained in O,(G(@)). Thus, ¢?" € F(G(@)), and since
F(G) = G N F(G{(g)), the order of the automorphism of G/F(G) induced by ¢ is at
most p™. O

Lemma 4.3. The number p™ is bounded in terms of deg(f(x)), namely, p™ < 2deg(f(x)).

Proof. By Lemma 2.2 for every prime divisor r of |H| there is a @-invariant Sylow r-
subgroup of H. Clearly, ¥ must act as an automorphism of order p™ on at least one such
Sylow subgroup. Let R be a ¢-invariant Sylow r-subgroup of G for some prime r # p on
which 9 acts with order p™, that is, on which wpm_l acts non-trivially. The semidirect
product R(1) acts by linear transformations on V, and V is a faithful F;R-module. We
claim that p™ — p™~! < deg(f(x)), which implies the required bound.

First suppose that r # ¢. Then the action of the semidirect product R{¢)) on V
gives rise to a Hall-Higman type situation, which may be ‘modular’ when p = ¢, or
‘non-modular’ when p # q.

In the ‘non-modular’ case p # ¢ we apply Lemma 3.3(a), by which the minimal
polynomial of 1) on V has degree at least p™ — p™~!. By Lemma 2.6(f) the minimal
polynomial of ¢ on V must also have degree at least p™ — p™~1. Since ¢ satisfies f(r)
on V, we obtain that p™ — p™~1 < deg(f(x)).

In the ‘modular’ case p = ¢q, we apply Theorem 3.1 after certain preparation. Since
G = G/O, »(G) and V is the Frattini quotient of O, ,(G)/O, (G), while (1) is a p-
group, we have O, (VG(¢)) = 1. Since (¥)/(1/?") acts faithfully on a Hall p’-subgroup
of G, while ¢*" € O,(G (%)) as shown in the proof of Lemma 4.2, we further obtain

Op p(VG{W)) = O, (VG () = V(1*").

Let U be the Frattini quotient of O, ,(VG(v)))/O, (VG(¥))), on which the group
VG() /Oy ,(VG(1))) acts faithfully by conjugation satisfying the hypotheses of Theo-
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rem 3.1. Since the order of the automorphism of U induced by % is p"*, by Theorem 3.1
the minimal polynomial of ¢ on U has degree at least p™ — p™ . We have

U= (V/[V.eP"]) x (") /(P ).

ince both factors o are -invariant an " is centralized by 1, the
Since both f f U are 1 d (P™) /(P

minimal polynomial of 1) on the first factor, and therefore on V', must also have degree
at least p™ — p™~!. By Lemma 2.6(f) the minimal polynomial of » on V must have
degree at least p™ — p™~1. Since ¢ satisfies f(z) on the characteristic abelian section V,
we obtain that p™ — p™~! < deg(f(z)).

Now suppose that 7 = ¢. In this case R is a g-group, and we consider the action of the

semidirect product R(1)) on F(G), which is a nilpotent ¢’-group containing its centralizer.
Since R acts faithfully on F(G), there is some Sylow t-subgroup T of F(G) for t # r on
which the subgroup [R,¢?" '] acts non-trivially. Let R = R/Cr(T). Note that by the
choice of T' the automorphism induced by ¥ on R has order p™. Then the action of the
semidirect product ﬁ(d)} on the Frattini quotient U of T again gives rise to a Hall-Higman
type situation, which may be ‘modular’ when p = ¢, or ‘non-modular’ when p # ¢. Using
the same Hall-Higman type arguments as above, based either on Lemma 3.3(a) or on
Theorem 3.1, we obtain in similar fashion that p™ — p™~1 < deg(f(x)).

So in all of the above cases, we have shown that p™ — p™~! < deg(f(z)), and this
implies the required bound. Indeed, if m = 0, then p™ < 2deg(f(x)). If m = 1, then
P < Pt deg(f(x) = 14 deg(f(x)) < 2deg(f(x)). If m > 2, then p™ = pp™ ' <
2(p— Dp™ ! < 2deg(f(x)). O

We return to the proof of the proposition. Let p{"*---p;™" be the prime factoriza-
tion of |¢|a / F(@)\ with distinct prime divisors p1, ..., p; and corresponding multiplicities
mi,...,m; > 0. Lemmas 4.2 and 4.3 then give us the bound

P < 2deg(f(z))

for each i € {1,...,1}, and therefore the bound |¢|g, pa)| < (2 deg(f(x)))?deslf (),
Furthermore, Theorem 2.10 gives us the bound

I < m(2deg(f(x))) < 1.25506 - (2deg(f(x)))/ In(2deg(f(x))),

where 7(+) is the usual prime counting function. For each i € {1,...,{}, we also have the
obvious bound m; < logy(2deg(f(x))) = In(2)~! - In(2deg(f(x))). Altogether, we obtain

alela/rel) =mi+-+my
<In(2)"! - In(2deg(f(x))) -1
<In(2)7! - In(2deg(f(2))) - 1.25506 - (2deg(f(x)))/ In(2 deg(f(2)))
<4-deg(f(z). O
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Proof of Theorem 1.4. Recall that G is a finite (soluble) group admitting a fixed-
point-free automorphism ¢ satisfying an elementary abelian identity f(z) € Z[z],
where f(z) is a primitive polynomial, and we need to obtain a bound for the Fit-
ting height of G in terms of deg(f(z)). Let ¢ be any prime dividing |G| and define
D :=(G/Oy 4(G))/F(G/Oy ,4(G)). By Proposition 4.1, we have a(|¢|p|) < 4deg(f(x)).
Then by Dade’s theorem [4] the Fitting height h(D) of D is bounded in terms of a(|¢|p|),
and Jabara’s paper [17] gives the bound 7 - a(|¢|p|)?. So, for each such prime g, we ob-
tain h(D) < 112 - deg(f(z))? and therefore h(G/Oy 4(G)) < 1+ 112 - deg(f(x))?. Since
F(G) =N, Oq,4(G), we obtain the required bound h(G) <2+ 112- deg(f(z))? for the
Fitting height of G. O

5. Proof of Theorem 1.5

In Theorem 1.5, for a finite soluble group G with a fixed-point-free automorphism ¢
satisfying an elementary abelian identity f(z) € Z[z], we need to obtain a bound on
the Fitting height of G in terms of irr(f(z)). As a first step, we use Proposition 4.1 to
perform a reduction to the case where the order of ¢ is bounded in terms of deg(f(x)).
Then, roughly speaking, we can pass to a fixed-point-free automorphism ¢ satisfying
the elementary abelian identity ged(f(z), /¢! — 1), which is a product of cyclotomic
polynomials the number of which is at most irr(f(z)). First we deal with this situation
in the following proposition, which requires imposing additional conditions on the prime
divisors of |G|. Then we finish the proof of Theorem 1.5 after defining a finite set of
‘forbidden’ prime divisors of |G| depending only on f(x).

Proposition 5.1. Let G be a finite (soluble) group admitting a fized-point-free automor-
phism ¢ satisfying an elementary abelian identity f(x) that is a product of ¢ cyclotomic
polynomials: f(z) = @y, (x) - P, (x). Suppose that

ged(1G1,2) = ged(|G|, [¢l!) = ged (|G|, na -+ ne) = 1.
Then the Fitting height h(G) of G is at most c.

Note that the coprimeness conditions on the order of G ensure that ¢ is a coprime
automorphism of G for which no exceptional situations arise in the ‘non-modular’ Hall—-
Higman type arguments for automorphisms induced by powers of .

Proof. We proceed by induction on the pairs (¢, a(|¢])) ordered lexicographically. We
formally include the case ¢ = 0 as the base of the induction, which means that f(x) = 1.
By the definition of elementary abelian identity we then have u = 1 for every u € S in
every characteristic abelian section S of GG, which of course means that G = 1, so that
indeed h(G) = 0 < 0%2. We may therefore assume that ¢ > 1.

First we show that the number of distinct primes dividing the order of ¢ can be
assumed to be at most ¢, by way of possibly replacing ¢ with another fixed-point-free
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automorphism. Suppose that for some prime p the cyclotomic polynomial ®,(z) does not
occur in the factorization of f(z). Then, since the eigenvalues of ¢ on every elementary
abelian characteristic section S of G are roots of f(x) and ged(|G|,n;) = 1 for every factor
b, (z) of f(z), the power ¢P is also a fixed-point-free automorphism of S. Therefore
©P is a fixed-point-free automorphism of G. By Lemma 2.7(a), the automorphism P
satisfies the elementary abelian identity H§=1 @, /gcd(n,,p) () with the same number
of cyclotomic factors (or possibly fewer if repeats appeared). Clearly, the coprimeness
hypotheses of Proposition 5.1 on |G| also hold with respect to ¢P instead of ¢. Since
a(leP]) = a(]e|) — 1, induction completes the proof. Hence we can assume from the
outset that for every prime p dividing |¢|, the cyclotomic polynomial ®,(z) does occur
in the factorization of f(z), and that therefore the number of distinct primes dividing
|| is at most c.

For every prime ¢ dividing |G|, consider G = G/O, ,(G) as above. It is sufficient
to prove that h(G) < ¢ — 1 for every g, as then the Fitting height of G' will be at
most ¢® because F(G) = (), Oy 4(G). We fix the prime ¢ for what follows. The group
G acts faithfully on the Frattini quotient V' of Oy 4(G)/O4 (G). Let @ be the induced
automorphism of VG. Let p be a prime divisor of |p| and let |@| = s,p*» for s, coprime
to p. For brevity we write s = s, and k = k, when we focus on this prime p, and let
1 = @° be a generator of the Sylow p-subgroup of (p).

There must be some factor ®,,,(z) of f(z) with p* dividing n;, since p* obviously
divides the order of ¢. Indeed, the (cyclic) Sylow p-subgroup of (p) must act faithfully
on some characteristic elementary abelian section S of G by Lemma 2.1. Then the auto-
morphism induced by ¢ on S has some eigenvalues of order divisible by p* and therefore
at least one of the factors @, (z) of f(z) must have n; divisible by p* by Lemma 2.7(b).

If the automorphism induced by ¢ on G/F(G) has order less than p* = |3, then
¢ has no primitive roots of unity of order divisible by p* on any elementary abelian
characteristic section of G/F(G). Then the polynomial f(z)/®,,(z), with n; divisible
by p¥, is an elementary abelian identity of the automorphism of G /F ((_?) that is induced
by ¢. Since f(x)/®,,(x) has ¢ — 1 cyclotomic factors, by the induction hypothesis the
Fitting height of G/F(G) is at most (c — 1)?, so that the Fitting height of G is at most
(¢ —1)? 4+ 1 and therefore at most ¢?, as required, since ¢ > 1.

Therefore we can assume that the automorphism induced by ¢ on G/F(G) has the
same order p¥ as on VG. This condition means that an application of the Hall-Higman
type arguments will result in the minimal polynomial of ¢ being 2P — 1, as will follow
from Lemma 3.3(b) in view of the absence of exceptional situations.

Namely, choose a 1)-invariant Sylow r-subgroup R of G for some prime 7 # p on which
1 acts with order p*, that is, on which wpk_l acts non-trivially. The semidirect product
R(%) acts by linear transformations on V', and V is a faithful F, R-module.

First suppose that r # ¢. Then the action of the semidirect product R(i)) on V gives
rise to a ‘non-modular’ Hall-Higman type situation, since p # ¢ by the hypotheses on
|G|. Since 9 acts faithfully on R, we can apply Lemma 3.3(b), by which the minimal
polynomial of 1 on V is 27" — 1 in view of the hypotheses on |G].
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Now suppose that » = g. In this case, R is a g-group, and we consider the action

of the semidirect product R{¥) on F(G), which is a nilpotent ¢’-group containing its
centralizer. Since R acts faithfully on F(G), there is some Sylow t-subgroup T of F(G)
for ¢ # r on which the subgroup [R, wpkfl} acts non-trivially. Let R = R/Cg(T). Note
that by the choice of T the automorphism induced by % on R has order p®. Then the
action of the semidirect product ]§<’(/J> on the Frattini quotient U of T' again gives rise
to a ‘non-modular’ Hall-Higman type situation, since p # ¢t. Applying Lemma 3.3(b) we
obtain in similar fashion that the minimal polynomial of ¥ on T/®(T) is " — 1.

Thus, in any case, there is an elementary abelian characteristic section S of VG on
which the minimal polynomial of 1 is 2" — 1. We regard S as a vector space over a
finite field, which we extend to an algebraically closed one. Since the automorphism @ is
of order coprime to the characteristic, it is diagonalizable. Since the minimal polynomial
of ¥ on S is zP’ — 1, the eigenvalues of ) = @° are all primitive p’-th roots of unity
for all i = 0,1,2,...,k. At the same time, these eigenvalues are the s-th powers of the
eigenvalues of p. Hence the eigenvalues of ¢ include primitive roots of unity for which the
highest power of p dividing their order ranges over all values p°, p*, p?, ..., p". Since @
satisfies the polynomial f(z) = [];_; ®n, (), there must be different cyclotomic factors
®,,,(z) in f(x) such that the highest power of p dividing the n; ranges over all values
p°,pt,p?, ..., p". Therefore the exponent k = k, of the highest power of p dividing |¢|
satisfies k <c— 1.

Since the number of distinct primes dividing |¢| is at most ¢ by our assumption, we
obtain that a(]@|) < ¢(c—1). By the Shult—Gross—Berger Theorem 2.4, the Fitting height
of VG = V(G/Oy ) is at most c(c — 1), so obviously the Fitting height of G/O, ,) is
also at most ¢(c — 1). Since this is true for every ¢, the Fitting height of G/F(G) is also
at most c(c — 1). As a result, the Fitting height of G is at most c(c — 1) + 1 < ¢2, as
required, since c > 1. O

We now introduce the finite set of primes o(f(x)) that is used in Theorem 1.5.
Let Res(a(x),b(z)) be the resultant of polynomials a(x),b(x) € Z[z]. Recall that
Res(a(x),b(x)) is an integer, which is equal to 0 exactly when deg(ged(a(z),b(x))) > 0.
Note also that Res(a(x),b(z)) = a(x)ai(x) + b(x)b1(x) for some a;i(x),b1(x) € Z[z] and
therefore Res(a(x),b(x)) belongs to the ideal generated by a(x) and b(z).

Definition 5.2. Let f(z) = ag + a17 + -+ + aqz? € Z[z] be a non-zero polynomial of

degree d := deg(f(z)) with content a := ged(ag, . . ., aq). Using the auxiliary polynomials
u(zx) = 2CD* _ 1 and v(x) := ged(f(z),u(x)) we define the (non-zero) integer

p = Res(f(z)/v(x), u(z)/v(z)).
We then define o(f(z)) to consist of the prime divisors of the (non-zero) integer

(2d)?™ - a - p.
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Recall that we denote by irr(f(z)) the number of different irreducible divisors of f(z),
counted without multiplicity.

We will only need the following four properties of these invariants.

Lemma 5.3. Let f(z) € Z[z]\{0} and let p be a prime not in o(f(z)). Then the following
hold.

(a) The prime p is odd and p > (2d)??.
(b) The polynomial f(x) does not vanish modulo p.
(c) If v(z) # 1, then v(z) = Py, (x) - Py (x) with ged(p,ny---n.) = 1 and ¢ <
ine(f(2)).
(d) The polynomial p - v(x) is in the ideal of Z[x] generated by f(x) and u(x).
Proof. (a) This is true because p is coprime to (2d)?!.
(b) This holds because p is coprime to the content a of f(z).
(c) This follows from the definitions of u(z) = 2D* _ 1 and v(z) = ged(f(x), u(x))
and part (a).
(d) Note that p is in the ideal of Z[z] generated by f(z)/v(x) and u(z)/v(z), and
therefore the polynomial p - v(z) is in the ideal of Z[x] generated by f(z) and u(z). O

Proof of Theorem 1.5. Recall that G is a finite (soluble) group admitting a fixed-point-
free automorphism ¢ satisfying an elementary abelian identity f(z) € Z[z] \ {0} and
that G is a o(f(x))-group. We need to show that h(G) < 2 +irr(f(z))?. We continue to
use the notation of Definition 5.2 and we distinguish between two cases: v(z) # 1 and
v(z) = 1.

We first consider the case v(x) # 1. According to Lemma 5.3(c), there are nonnegative
integers ¢ and nq,...,n. such that v(z) = ®,, () P, (x) and ¢ < irr(f(z)). Let ¢ be
any prime divisor of |G| and define the quotients G := G/O, ,(G) and D := G/F(G),
as before. It now suffices to verify that v(z) is an elementary abelian identity of the
fixed-point-free automorphism ¢|p of D induced by ¢ and that

ged(|D],2) = ged(|D, [¢lpl!) = ged(|D],n -+ ne) = 1.

Indeed, then we will be able to apply Proposition 5.1 to D, ¢|p, and v(z) in order to
obtain the bound h(D) < ¢ and therefore h(G) < 1+ ¢2. Since F(G) = N, Oq,4(G), we
will then obtain the required bound h(G) < 2+ c? < 2+irr(f(z))? on the Fitting height
of G, since ¢ < irr(f(x)).

We first verify the coprimeness conditions. Clearly, ged(|D|,2) = 1, since G is a
o(f(z))'-group. According to Lemma 5.3(b), the polynomial f(z) does not vanish modulo
any prime divisor of |G|. Therefore we can apply Proposition 4.1 to G, ¢, and f(z) in
order to obtain the bound |¢|p| < (2d)??. By Lemma 5.3(a), every prime divisor p
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of |D| satisfies p > (2d)2?. Hence, ged(p, |¢|p|!) = 1. By Lemma 5.3(c), we also have
ged(p,ng -+ me) = 1.
To prove that v(z) is an elementary abelian identity of ¢|p, we first recall that f(x)

is elementary abelian identity of ¢|p. Since |p|p| < (2d)%¢, the polynomial u(x) =

22D 1 is also an elementary abelian identity of ¢|p. By Lemma 2.8, the elementary

abelian identities of |p form an ideal of Z[z]. By Lemma 5.3(d), the polynomial p-v(x)
belongs to the ideal generated by f(x) and u(x); therefore p-v(x) is an elementary abelian
identity of ¢|p. We have ged(|D], p) = 1, since p is a product of primes in o(f(z)) and
G is a (o(f(x)))'-group by hypothesis. In accordance with Euclid’s algorithm, we have
1 € p-Z[z]+|D|-Z[z] and therefore also v(x) € p-v(x)-Z[z]+|D|-v(z)- Z[z]. Clearly, | D]
is an elementary abelian identity of ¢|p. As a result, v(z) is in the ideal of elementary
abelian identities of ¢|p, and the case v(z) # 1 is complete as explained above.

Finally, we consider the case v(z) = 1. Suppose that, for some prime divisor ¢ of |G/,
the quotient D := (G/Oy 4(G))/(F(G/Og 4(G))) is non-trivial. Then we again have the
bound |p|p| < (2d)2? by Proposition 4.1. The polynomial u(z) is therefore again an
elementary abelian identity of ¢|p, so that v(x) is again an elementary abelian identity
of ¢|p. Since v(x) = 1, the group D is therefore trivial. This contradiction shows that,
for every prime divisor ¢ of |G|, we have h(D) = 0 and therefore h(G/Oy 4(G)) < 1.
Since F(G) =1, Og,q(G), we obtain the required bound h(G) <2 <2+ irr(f(x))? on
the Fitting height of G. O
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