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Explainable automated 
recognition of emotional states 
from canine facial expressions: 
the case of positive anticipation 
and frustration
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In animal research, automation of affective states recognition has so far mainly addressed pain in a 
few species. Emotional states remain uncharted territories, especially in dogs, due to the complexity 
of their facial morphology and expressions. This study contributes to fill this gap in two aspects. First, 
it is the first to address dog emotional states using a dataset obtained in a controlled experimental 
setting, including videos from (n = 29) Labrador Retrievers assumed to be in two experimentally 
induced emotional states: negative (frustration) and positive (anticipation). The dogs’ facial 
expressions were measured using the Dogs Facial Action Coding System (DogFACS). Two different 
approaches are compared in relation to our aim: (1) a DogFACS-based approach with a two-step 
pipeline consisting of (i) a DogFACS variable detector and (ii) a positive/negative state Decision Tree 
classifier; (2) An approach using deep learning techniques with no intermediate representation. The 
approaches reach accuracy of above 71% and 89%, respectively, with the deep learning approach 
performing better. Secondly, this study is also the first to study explainability of AI models in the 
context of emotion in animals. The DogFACS-based approach provides decision trees, that is a 
mathematical representation which reflects previous findings by human experts in relation to certain 
facial expressions (DogFACS variables) being correlates of specific emotional states. The deep learning 
approach offers a different, visual form of explainability in the form of heatmaps reflecting regions 
of focus of the network’s attention, which in some cases show focus clearly related to the nature of 
particular DogFACS variables. These heatmaps may hold the key to novel insights on the sensitivity of 
the network to nuanced pixel patterns reflecting information invisible to the human eye.

Charles Darwin famously described the use of facial expressions as displays of emotional states in humans and 
various non-human species (hereinafter referred to as animals) in his seminal work ‘The Expression of the 
Emotions in Man and Animals’1. Nowadays it is widely acknowledged that facial expressions are an impor-
tant source of information for recognizing emotional states. In humans, facial expressions serve as a primary 
nonverbal means regulating interactions2 and the association between facial expressions and emotional states 
has long been established by systematic studies in psychology3,4. In animals, facial expressions are produced by 
most mammalian species5, and, as in humans, they are assumed to convey information about emotional states6,7. 
Therefore, facial expressions are increasingly studied as potential indicators of subjective states in animal emo-
tion and welfare research.
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The gold standard for objectively assessing changes in facial expressions in human emotion research is the 
Facial Action Coding System—FACS8,9. FACS has recently been adapted for different non-human species, includ-
ing several non-human primates (e.g. orangutans10, chimpanzees11, macaques12,13), marmosets14, dogs15 and 
cats16. These systems referred to as AnimalFACS are, as in humans, increasingly used for studying animal emo-
tional states (e.g.17–19).

A major challenge in identifying standardised facial expressions in dogs concerns the morphological diversity 
of their heads20,21 and overlying dermal structures, such as the inclusion of permanent wrinkles in some breeds. 
To identify facial emotional expressions in dogs, Caeiro et al.18 applied DogFACS to assess the spontaneous 
response of individuals of different breeds and mixes in naturalistic emotional settings using online videos. 
Emotions of both positive and negative valence were investigated, including reward anticipation (a positively 
valenced emotion) and frustration (a negatively valenced emotion), both characterised by expectation of a 
desired stimulus16. Positive anticipation was defined as being induced in situations involving the “[v]isualisa-
tion of food or hearing meal/food related word(s); [v]isualisation of leash, hearing walk related word(s)”and 
frustration was defined as being induced by the “[v]isualisation of a desired resource (toy, food, space) that is 
or becomes inaccessible”18. While Caeiro et al.18 found that dogs displayed significantly different facial expres-
sions in distinguishing certain emotional states, there were no distinctive features identified within the context 
of frustration. Accordingly, Bremhorst et al.22 investigated dogs’ facial expressions of positive anticipation and 
frustration in a controlled experimental setting, unlike that of Caeiro et al.18, standardizing also the dog breed 
(Labrador Retriever). Moreover, the authors used a non-social context to eliminate the risk of interference from 
previously learned attention getting responses. To experimentally elicit both emotional states studied, a high-
value food reward was used as the triggering stimulus in two conditions: the positive condition was predicted to 
induce positive anticipation (through conditioned food expectation), and the negative condition should induce 
frustration (i.e. through prevention of access to the expected food reward). Dogs’ facial expressions in these two 
states were measured using DogFACS. The authors found that the “Ears Adductor” variable was more common 
in the positive condition, while “Blink” , “Lips Part” , “Jaw Drop” , “Nose Lick” , and “Ears Flattener” variables 
were more common in the negative condition22. In a follow-up study, Bremhorst et al.19 tested a new group of 
dogs using a similar set-up. However, in this study, two different types of rewards were used (food and toys) to 
test the generalizability of their previous findings to a wider range of contexts19.

The previous results were replicated19, with four further variables more common in the negative condition: 
“Ears Downward”, “Lip Corner Puller”, “Tongue Show” and “Upper Lip Raiser”. All of the identified facial expres-
sions except the “Upper Lip Raiser” were independent of the reward type the dogs were expecting to receive19. 
Furthermore, basic measures of diagnostic accuracy were evaluated for the identified facial expressions as poten-
tial emotion indicators, including their sensitivity, specificity, and positive and negative predictive values19. The 
results indicated that none of these facial expressions would have provided consistent correct classifications of 
the associated emotion if used on their own as individual emotion indicators19. This does not discount their 
potential value as signals, but perhaps emphasizes the normal holistic processing of facial configurations23, rather 
than the focus on single elements within it.

The presence of an audience in an emotional context is an important element to be considered when inves-
tigating facial expressions (of emotions) in dogs, as shown by a recent study of Pedretti et al.24. Similarly to19,22, 
the authors also exposed dogs to positive anticipation, and non-social and non-social frustration, evoking test 
sessions. They also used DogFACS to analyse dogs’ facial expressions in these situations, apart from other behav-
iours such as tail wagging, measuring pre and post-test salivary cortisol concentrations. They found that “Ears 
Forward” occurred more in the positive condition compared to the negative conditions. Furthermore, this vari-
able was positively influenced by the presence of an audience, and negatively correlated to the pre-test cortisol 
concentrations, suggesting it may be a good indicator of dogs’ level of attention. “Ears Flattener” , “Blink” , “Nose 
Lick” , “Tail Wagging” and “Whining” (the latter two not included in DogFACS variables) were also associated 
with the presence of an audience but were not correlated to cortisol concentrations, suggesting a communicative 
component of these behaviours.

This shows that DogFACS can also serve to investigate dog facial expressions not only as cues (i.e., producing 
behaviour changes that accompany emotional states) but also as signals (i.e, behaviours specifically produced for 
the purpose of communicating an emotion to a communication partner), see also25. The AnimalFACS systems 
hence provide an important means of promoting understanding of animal facial expressions. However, the use 
of these systems for facial expression analysis has its challenges, including its dependence on manual annotation 
which requires extensive human training and certification, this can be time consuming to undertake, and may 
be prone to human error or bias26.

Automation has the potential to provide an important complementary advancement to this process. In par-
ticular it is argued that automated tools to have greater objectivity and reliability than manual coding, elimi-
nating subjectivity and bias27,28, but they also do not depend on single feature detection for their success. It is 
therefore not surprising that automated facial expression coding is a vibrant field in human emotion research, 
with numerous commercial software tools available, such as FaceReader by Noldus29, Affdex30, EmoVu31, as well 
as extensive databases such as CAS(ME)332.

In animals, on the other hand, automation of facial exoressions analysis is under-researched. This is due to 
several challenges (as discussed by33,34), including: first the relative recency of growth or interest in animal emo-
tion research, which means much less data are available compared to the vast amounts of data in the human 
domain. Second, especially in domesticated species, the great variation in facial morphology presents technical 
challenges35. Last, the lack of verbal self-report makes it challenging to establish ground truth for the emotional 
state experienced in animals, whereas in humans, self-reporting is a standard approach for this purpose. Data 
collection protocols for animals thus require extensive control and regulation, operational definitions of the 
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emotional states studied (see e.g.18), or possibly rating by human experts—although this potentially introduces 
bias and subjective judgement.

Broomé et al.36 provided a comprehensive survey of twenty studies presenting state-of-the-art approaches to 
automated recognition of emotion and pain in animals. The majority of these works focus on the occurrence of 
pain. Species that have been addressed in this context include rodents37–39, sheep40, horses33,41,42 and cats43. All 
of these works provide a binary classifier for pain/no pain, using machine learning techniques.

Work on more widely automating animal emotion recognition is much more scarce. Two studies in non-
human primates focus on related Action Unit/facial expression recognition, without explicitly addressing emo-
tional states44,45. Blumrosen et al.44 automated recognition of four facial expressions of non-human primates: 
neutral, lip smacking, chewing, and random mouth opening with minimal annotation efforts, while Morozov 
et al.45 implemented a prototype system for automatic MaqFACS coding for Rhesus macaques, trained to classify 
six MacFACS variables.

Only three works providing end-to-end classification for different emotional states were surveyed in Broomé 
et al.36. Corujo et al.46 defined four emotional states for horses: “alarmed” , “annoyed” , “curious” , and “relaxed” , 
defining each of them in terms of eyes, ears, nose and neck behavior. For instance, “relaxed” was defined as eyes: 
partially to mostly shut, ears: relaxed, opening pointing to the sides, nose: relaxed mouth and neck: approximately 
parallel. A convolutional neural network (CNN) model was trained to predict these four “classes” of emotion. 
Ferres et al.47 used automated pose estimation using DeepLabCut48 for the classification of four emotion classes 
“anger”, “fear”, “happiness” and “relaxation” for dogs. Franzoni et al.49 also used a CNN model to classify limited 
attributes related to emotional states: “smile” (related to “joy” ), “growl” (related to “anger” ) and “sleep” (related 
to a neutral state).

Of the three works related to dogs47,49,50 two focused on body for recognizing emotional states47 and pain50, 
and one on facial expression of emotion49. However, the datasets used in the studies of Ferres et al.47 and Franzoni 
et al.49 both contained images collected from the internet and annotated by non-experts, and thus potentially 
were of low reliability and validity. The work of Zhu50 studies pain recognition based on body language, and not 
facial expressions.

The study presented here is the first to explore automated recognition of dog emotions from facial expressions, 
using a dataset collected from a carefully designed experimental protocol where the context defines the emo-
tional states22. In this protocol, the emotional states of positive anticipation (a positive emotion) and frustration 
(a negative emotion) were operationally defined (in accordance to18 and experimentally induced in a sample of 
29 Labrador Retriever subjects, minimizing variability of morphological differences between dogs. The facial 
expressions that the dogs produced were coded objectively using the standardised DogFACS system by certified 
DogFACS coders. This dataset creates a unique experimental environment for exploring different approaches 
to automation of emotion recognition with minimal bias in the definition of emotion. The data further benefits 
from reduced morphological variation of participants’ faces due to the standardisation of the breed.

According to36, there are two standard routes to classification of emotional or pain state: using hand-crafted 
features, or using a deep learning paradigm based on learnt features51. Hand-crafted features can be roughly 
divided into low level features, which are based on image statistics (such as histograms of oriented gradients) 
commonly used in the computer vision literature51, and high-level features, which are semantically grounded, in 
species-specific anatomical facial and/or body structure, grimace scales, action units, etc. Examples of the latter 
are cat facial landmarks52, dog body keypoints47 or sheep pain action units40. These features promote explain-
ability of the machine learning algorithms by grounding the model’s decisions in behavioural concepts. The deep 
learning approach, on the other hand, is more flexible and expected to perform better (especially when large 
datasets are available), yet requires costly computational resources and is ‘black-box’ in the sense that it does 
not lend itself to explaining in human-comprehensible terms why a particular classification decision is made.

In this study, we investigate both of these alternative routes to automated classification of emotional states in 
dogs. The first route uses DogFACS variables as explainable high-level features. The classification pipeline has two 
stages in this case: first, automated recognition of DogFACS codes and second, using the annotations to classify 
the emotions studied. We demonstrate the utility of such explainable representation for understanding the way 
in which the DogFACS variables are used in the machine’s decision making. The second route takes a (simpler, 
one-staged) deep learning approach, letting the machine learn directly from the data features that are not neces-
sarily human-understandable. We further compare aspects of explainability between the two approaches, and 
use heatmap visualization techniques to highlight the relationship of the learnt features to semantic objects 
related to the dog facial parts.

Results
Dataset.  We used the dataset and DogFACS annotations generated as part of a previous study by Bremhorst 
et al.22. To reduce effects of morphological variation, 29 subjects of one breed without extreme facial features 
(Labrador Retriever) were tested (19 females–13 neutered, 10 males–9 neutered; age range: 2–9.5 years, mean 
age = 5.22 years). Figure 1 demonstrates the distribution of the subjects’ age and sex.

The dataset included overall 248 video samples of 3s length recorded in frame rate of 25.25 frames/s, each 
frame resolution is 1920 × 1080 pixels. The camera used for recording was HIKVision, IR Mini Bullet Network 
Camera; recorder: HIKVision, DS-7600 Series. The subjects were located behind a transparent window using 
the protocol which is fully described in Bremhorst et al.22. Each subject was tested 3 times in the positive, and 6 
times in the negative condition.Thus overall two thirds of the videos were annotated as negative, and one third 
as positive. It is assumed throughout this study that the negative condition induces frustration, and the positive 
condition induces positive anticipation, thus henceforth we use the positive/negative valence to refer to the two 
emotional states. Figure 2 shows crops of dog faces extracted from the dataset.
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The dataset was balanced using random undesampling, leaving 82 videos of positive condition, and 82 videos 
of negative condition from (n = 29) individuals, overall 164 videos. The balancing was done maintaining the 
same number of positive and negative samples per individual.

All video samples were coded using 39 DogFACS variables based on the DogFACS manual53 by a certified 
DogFACS coder, by annotating one frame per 200 ms using the Solomon Coder (version 15.03.15, Andràs Péter). 
Out of these 39 variables, eleven variables presented in Table 1 were used in the study of Bremhorst22, based on a 

Figure. 1.   Number of dogs by age and by sex. The dataset contains slightly more female than male dogs, and 
slightly more younger dogs than older ones.

Figure. 2.   Example frames from the dataset.
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prevalence of at least 10% across all samples of either the positive or negative condition and at least a substantial 
strength of intercoder agreement (see22 for further details).

Overview of the two approaches.  We present here a comparison of two different approaches for auto-
mated classification of positive and negative conditions: DogFACS-based vs. pure (the DogFACS approach also 
has a deep learning module for DogFACS variable detection) deep learning approach. Figure 3 presents a high-
level overview of the two approaches.

The availability of video data enables us to work with two types of input: single frames, or sequences of 
frames. The former implies more information loss, but is simpler and more controllable; while the latter includes 
a temporal dimension, which has been shown to have importance for such tasks, e.g., in the context of detec-
tion of pain in horses42,54. The prevalent approach in the context of automated recognition of affective states and 
pain in animals, is, however, the single frame basis (e.g.,33,39,41,55). Due to the exploratory nature of this study, 
we decided on this option.

Thus both approaches work on a single frame basis, i.e., the classification is performed on single frames 
extracted from videos. However, aggregation of the single-frame information is performed differently in the two 
cases. After a pre-processing step of extracting cropped dogs faces from the frames (see Fig. 2 for examples), in 
the deep approach the raw cropped faces are taken as input by a neural network. We experiment here with neural 
network architectures of two types: convolutional neural network (Resnet5056) and the recently introduced vision 
transformer57 (ViT) network. The decisions of the chosen network are then aggregated using majority voting, 
and the classification decision per video is reached.

The DogFACS-based approach, on the other hand, uses a pipeline with two consecutive steps. The first is the 
automated DogFACS Variable detector, which detects a set of DogFACS variables in each frame. The DogFACS 

Table 1.   DogFACS variables (Action Units (AUs), Action Descriptors (ADs) and Ear Action Descriptors 
(EADs)) used in22.

Num DogFACS variable Description

AU101 Inner brow raiser Protuberance above the eye moves dorsally and obliquely towards the midline

AU145 Blink Both eyelids move towards and touch each other, covering the eye for less than 0.5 s

AU12 Lip corner puller Lip corners move caudally

AU116 Lower lip depressor Lower lip moves ventrally

AU25 Lips part Any lip separation

AU26 Jaw drop Lower jaw moves ventrally in a relaxed manner and teeth are separated

AD19 Tongue show Tongue is protruded at least until the inner lower lip

AD137 Nose lick Tongue moves out of the mouth towards the nose and wipes it

AD126 Panting Mouth is open, tongue is protruded, and dog breathes shortly and quickly

EAD102 Ears adductor Ears move dorsally towards the midline of the head; bases of both ears come closer together

EAD103 Ears flattener Ears move caudally

Figure. 3.   Overview of the two approaches.
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variables are then aggregated for the whole video. The second step is a decision tree, whose input is the set of 
DogFACS variables detected in the video is applied to reach the final classification decision.

Thus, the DogFACS-based approach makes a classification decision based on the set of DogFACS variables 
identified in the video; the deep learning approach, on the other hand, makes a decision on each frame separately, 
extracting learnt features from raw images, and then aggregates the decision for all frames for the video. There-
fore, when exploring explainability of the two approaches, in the former we are expected to have ‘explanations’ 
along the lines of Bremhorst et al.22 (identifying prevalent variables in each of the conditions, or some combina-
tion of them). The latter approach, however, is expected to yield more visual explanations on what image features 
the model focuses, as elaborated below.

For evaluating the performance of our models, we used the standard metrics of accuracy, precision, and recall, 
which is the standard method in the context of machine learning. As a validation method, we used the leave-
one-subject-out cross validation with no subject overlap, which means utilizing each individual dog subject as a 
separate test set. This method is recommended for datasets in which one individual has more than one associated 
sample36. See Broomé et al.36 for a discussion of the importance of choosing an appropriate validation method.

DogFACS‑based approach.  Sets of DogFACS variables.  We experimented with two different sets of 
DogFACS variables: 

1.	 The set of the eleven variables presented in Table 1 which were utilized in the study of Bremhorst et al.22, 
which are the most promising or potentially most important variables (based on a prevalence of at least 10% 
across all samples of either the positive or negative condition) and they could be coded reliably (with at least 
a substantial strength of intercoder agreement, see22).

2.	 The whole set of the 39 DogFACS variables coded in the study of Bremhorst et al.22.

Classification results.  To explore optimal performance, we used the manual DogFACS annotations from Brem-
horst et al.22 to experiment with different machine learning techniques, including Decision Tree, XGBoost and 
Random Forest. Table 2 presents a comparison in their performance, with Random Forest performing slightly 
better for the full set of DogFACS variables (39 variables), reaching accuracy > 71%. In the limited set (11 Dog-
FACS variables), the three models converged to one tree, and thus are presented together, reaching a slightly 
lower accuracy of > 66%.

Minimizing the decision tree.  Next we performed a systematic search for a minimal set of DogFACS variables 
that would yield the same classification performance presented in Table 2. Table 3 shows that using only one 
DogFACS variable as a feature guarantees similar performance as the one presented in Table 2. The variable ‘Ears 
Flattener’ is the most important for classification using the limited set of 11 DogFACS variables, its presence 
predicting the negative condition. Figure 4 shows the simplified decision tree with just one feature predicting the 
positive condition—‘Ears Flattener’ absence, and the negative condition—its presence (with accuracy of > 66%).

Notably, when considering all of the 39 DogFACS variables, ‘Eyes Up’ is the most important variable for 
classification using all the 39 variables, its presence predicting positive condition with a high accuracy of > 71%.

Automated detection of DogFACS variables.  Based on our findings, training a detector for the ‘Ears Flattener’ 
and ‘Eyes Up’ DogFACS variables suffices for a fully automated classification pipeline. We also explored the 
detection of other variables, using a pre-trained ResNet50 convolutional neural network on balanced datasets 

Table 2.   Classifier performance comparison.

Model DogFACS variables num

Test Train Positive (test) Negative

Accuracy Precision Recall F1 Precision Recall F1

Decision tree 39 0.71 0.71 0.68 0.69 0.68 0.70 0.73 0.71

XGBoost 0.71 0.71 0.68 0.69 0.68 0.70 0.73 0.71

Random forest 0.72 0.70 0.69 0.68 0.68 0.73 0.75 0.74

Decision tree/ XGBoost/
Random forest 11 0.66 0.66 0.62 0.68 0.65 0.67 0.67 0.67

Table 3.   Single DogFACS variable predictive performance.

Model DogFACS variables

Test Train Positive (test) Negative

Accuracy Precision Recall F1 Precision Recall F1

Decision tree/ XGBoost/
Random forest Eyes up (1) 0.71 0.71 0.68 0.69 0.68 0.70 0.73 0.71

Decision tree/ XGBoost/
Random forest Ears flattener (1) 0.66 0.67 0.66 0.62 0.64 0.64 0.67 0.67
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(on varying numbers of images due to the variability in DogFACS variable frequency). The performance of the 
obtained detectors is presented in Table 4.

Deep approach.  In this approach we employed the common “transfer learning” setup, training a linear 
probe on top of a fixed pre-trained backbone using human annotations. We explore the suitability of different 
backbones for this task by repeating the experiment with four pre-trained backbones: ResNet and ViT trained 
either in a supervised manner for image classification57 or in a self-supervised manner using DINO58.

We trained four different models (on the whole dataset) and tested their performance using frames from the 
same balanced dataset described above (82 videos of the negative condition, 82 videos of the positive condition 
from (n = 29) individuals, making 164 videos overall).

Table 5 presents classification results analyzed per video, i.e., we say that a video is classified correctly if the 
majority of its frames is classified correctly. It can be seen that the model trained with a DINO-ViT backbone 
shows the best performance of above 89% accuracy. Table 6 presents classification results analyzed by frames. As 

Figure. 4.   Reduced decision tree (with 11 DogFACS variables).

Table 4.   DogFACS variable detector performance.

DogFACS variable Accuracy Precision Recall F1 Num of samples

Ears flattener 0.73 0.72 0.77 0.74 5772

Eyes up 0.71 0.67 0.71 0.69 4096

Ears adductor 0.51 0.32 0.37 0.34 574

Head turn right 0.72 0.76 0.64 0.69 2772

Head up 0.74 0.78 0.69 0.73 3282

Lips part 0.61 0.59 0.62 0.60 2176

Ears forward 0.61 0.73 0.75 0.74 2860

Head down 0.74 0.76 0.76 0.76 3686

Nose lick 0.58 0.46 0.7 0.56 40

Table 5.   DL classification results: frames are aggregated over each video using majority voting. Best value is in 
bold.

Backbone

Accuracy

Positive Negative

Initial weights Model Precision Recall F1 Precision Recall F1

Supervised
ResNet50 0.81 0.91 0.70 0.79 0.75 0.93 0.83

ViT 0.82 0.80 0.87 0.83 0.85 0.77 0.81

DINO
ResNet50 0.81 0.92 0.70 0.79 0.75 0.94 0.83

ViT 0.89 0.94 0.84 0.89 0.85 0.95 0.90
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expected, in this case measures are somewhat decreased compared to the analysis done on frames aggregation 
resulting in  85% accuracy for the model trained with a DINO-ViT backbone.

Discussion
The present study is the first to explore automated recognition of canine emotional states focusing on diverse 
facial expressions, whilst using a carefully designed controlled experimental setup for dataset creation and 
annotation. We present classifiers of two different types: deep learning based and DogFACS-based, both having a 
performance that is comparable to and in some cases outperforms those presented in previous studies addressing 
recognition of pain or emotional state from facial expressions, including mice38,39 (> 89% and 93% respectively), 
cats43 (> 72%), horses42,46 (> 75% and 65% respectively) and sheep55 (> 64%).

The DogFACS-based approach described here reached accuracy of > 71% using the full set (n =  39) of 
DogFACS variables, but a lower accuracy of > 66% when using only the eleven DogFACS variables which were 
utilized in the study of Bremhorst et al.22 ( this accuracy was achieved based on manual DogFACS annotations 
and is expected to drop even lower in an end-to-end pipeline). Of the full set of 39 DogFACS variables, ‘Eyes 
Up’ were of considerable importance for classification and including them in the Decision Tree leads to higher 
accuracy (> 71%). However, when interpreting directional variables such as eye movements and their signifi-
cance as potential emotion indicators, the experimental set-up of the study in which the data were collected 
must always be considered. In Bremhorst et al.22, the experimenter delivered the food reward with a motion 
slightly above the dogs’ eyeline. This may have encouraged the dogs to look up (inducing the ‘Eyes Up’ variable) 
in anticipation of food. We must therefore recognize that this DogFACS variable could possibly be an artifact 
of the experimental procedure. When selecting variables as part of the development of emotion indicators, it is 
important to weigh up the risk of a type I error (false positive) versus a type II error (false negative) is almost 
unavoidable. In working with a reduced set of eleven DogFACS variables, we prioritized the avoidance of false 
negatives over false positives in order not to prematurely exclude a variable from further investigation. We can 
expect that erroneously accepted variables will be excluded in subsequent studies if their lack of predictive valid-
ity is identified (as discussed in19).

As a byproduct of these results, we obtained automated detectors for nine DogFACS variables, of which five 
performed with an accuracy > 70%, demonstrating the feasibility of accurate automated recognition of DogFACS 
variables. The main challenge for training detectors for each variable is data availability, i.e., the low frequency 
of appearance of some DogFACS variables, requiring focused efforts for collecting datasets for specific variables. 
Moreover, some variables have a temporal dimension and cannot be handled on a single-frame basis (e.g., eye 
blink or panting). Developing detectors for them requires models which also make use of temporal dynamics, 
such as the approach of Broomé et al.42.

It should further be noted that as our dataset is limited to one breed, an immediate future research need is 
an assessment of the generalizability of the models to other breeds. If performance drops significantly when 
transferring the results to other breeds, alternative approaches to the deep approach used here are indicated, 
e.g., in Feighelstein et al.43.

Exploring generalizability of the models presented here is important not only in the context of DogFACS 
variable detection, but also for emotion classification. The dataset used here is controlled not only for breed, but 
also is recorded in strictly controlled environmental conditions. Generalizing from controlled environments to 
naturalistic settings is a notoriously difficult challenge also in human affective computing60. Feng et al.61 provide 
a review for the human domain of ways in which transfer learning techniques can overcome challenges related 
to limited amount of data samples, scarce labels, and environmental variability, promoting robust and generaliz-
able automated systems for emotion recognition. Similar ways can be explored in canine affective computing; 
the results presented here provide a baseline for further exploration of this direction.

Questions such as ’can machines recognize emotional states of animals?’ are interesting in their own right 
and have far reaching practical applications for animal welfare. The results of our study provide some indication 
for a positive answer, at least for the case of positive frustration and anticipation in dogs. However, building AI 
models that recognize dog emotions has a significant added value in helping us understand how machines classify 
emotions, whether they are sensitive to nuances not visible for the eye of a human expert, and what implications 
it has for our understanding of animal emotions, and ongoing debates on animal sentience. For this reason, it 
is crucial and promising to explore explainability (what is the rationale behind the machine’s decision?), and 
interpretability (how is the model structure related to making such decision?)62. These topics are fundamental 
in AI, and are addressed by a huge body of research63–65, with the majority of efforts focusing on deep learning 
approaches, whose interpretability is limited by their complex structure66. Explainability methods are by their 

Table 6.   DL classification results: analysis per frame. Best value is in bold.

Backbone

Accuracy

Positive Negative

Initial weights Model Precision Recall F1 Precision Recall F1

Supervised
ResNet50 0.75 0.83 0.64 0.72 0.70 0.86 0.72

ViT 0.79 0.77 0.82 0.80 0.80 0.75 0.78

DINO
ResNet50 0.78 0.86 0.69 0.77 0.74 0.88 0.80

ViT 0.85 0.89 0.81 0.84 0.81 0.90 0.86
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nature domain-specific: providing explanations for automated personality trait recognition in job interviews is 
different, e.g., from providing clinical justification for medical decisions62.

Our study is the first to address explainability aspects of AI models for animal emotion recognition. As we 
compared two different approaches to classification of emotions, there is added value from the ability to compare 
also the differences in the aspects of explainability they address. The DogFACS-based approach leads to models 
in the form of simple Decision Trees, which model human logical reasoning in the form of a combination of 
Boolean conditions concerning the presence/absence of certain DogFACS variables. The explanatory nature of 
Decision Trees is especially reflected in their simplified version with just one node, such as the one studied here 
(with ‘Ears Flattener’). Such trees are closely related to concepts useful for human experts, specifically for emo-
tion indicators studied by Bremhorst et al.19. Valid emotion indicators are meant to accurately identify a specific 
emotional state, being present whenever the emotion is present, and absent otherwise. These characteristics 
are described by sensitivity and specificity, metrics commonly used for assessing the accuracy of diagnostic 
tests. Bremhorst et al.19 found that none of the DogFACS variables considered in the study could be considered 
a specific individual indicator for positive anticipation or frustration in dogs. Specifically, ‘Ears Flattener’ was 
shown to have relatively high sensitivity but low specificity. It is thus not surprising that the model described in 
our study, which is a Decision Tree with ‘Ears Flattener’ as a single feature, did not achieve high performance. 
However, the relationship between metrics of emotion indicators as used by Bremhorst et al.19, and the metrics 
used here to evaluate the performance of our model is not straightforward. While the former computes sensi-
tivity, specificity, and positive and negative predictive value for the whole, unbalanced data, the latter evaluates 
performance in a prediction task. This means that data is split into two portions: training, which is used to train 
the model, and testing for its performance evaluation. In contrast to Bremhorst et al.19 we also balanced the data 
using undersampling. However, the intuitive connection between the two is that if an excellent emotion indica-
tor was found using the former approach, we could expect that a Decision Tree using it as a feature would also 
reach excellent performance.

In addition to explainability, the machine learning approach presented here for searching for optimal Deci-
sion Tree models to predict dog emotions has the potential to lead to new insights into emotion indicators. As 
discussed above, discovery of accurate emotion indicators in terms of Bremhorst et al.19 is closely related to the 
problem of finding Decision Tree classifiers with a single DogFACS variable for emotion prediction. While such 
classifiers have not been shown to have high accuracy in our study (and indeed, no accurate emotion indicators 
have been discovered in19), classification performance can be improved by considering more sophisticated forms 
of Decision Trees, for instance by grouping DogFACS variables together into pairs, triples, etc. Our preliminary 
experiments using pairs of DogFACS variables as nodes, shown on Fig. 5, show that this improved the model’s 

Figure 5.   Decision Tree using pairs of DogFACS variables. Accuracy: 0.652463, Precision: 0.651149, Recall: 
0.902299.
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performance in terms of recall. Importantly, the investigation of which combinations of DogFACS variables may 
improve classification, can be made in an automated, exhaustive and systematic manner, potentially leading to 
more fine-grained notions of emotion indicators. This provides a promising path for future research.

The deep learning approach, on the other hand, achieved markedly higher performance of above 89%, dem-
onstrating the potential of such approaches for classification of emotions. Moreover, DINO-ViT backbone seems 
to be most suitable for the task of emotion classification out of all the four investigated options. We hypothesize 
that this is due to DINO-ViT features being sensitive to object parts, as shown in67; and due to the nature of 
the emotion classification task, requiring understanding at the object-part level (face parts such as eyes, ears, 
etc.). Intriguingly, the backbones pre-trained with DINO produce better results than the supervised backbones.

It should be noted that the deep learning classifier worked on the basis of images, then aggregating the 
results per video. This implies that despite many of the frames do not exhibit the presence of DogFACS vari-
ables, the model is still successful in their correct classification. This may indicate the sensitivity of the model 
to fine-grained details on a pixel level which may go beyond the ability of the human eye. However, it may also 
be related to potential pitfalls in the form of some inherent bias. Also, the ‘Eyes Up’ variable, discussed above, 
may have been instrumental for the network and its effect on the decision making is not easily neutralized in 
the deep learning network. Investigating these issues requires further data collection in different experimental 
and environmental conditions to rule out such pitfalls.

Explainability of the deep learning approach considered here is, on the other hand, of a completely different, 
more visual nature compared to that based on DogFACS. Unlike Decision Tree models, it is extremely challeng-
ing to explain decision making of neural networks in human-comprehensible terms, due to their highly com-
plex, ‘black-box’ nature68. Using the EigenCAM59 method highlights differences between the different models 
we experimented with (ResNet/ViT, supervised/DINO). As demonstrated in Fig. 6, there are some differences 
between the models. The ViT models seem to exhibit better localization than the ResNet models, as the highly 
activated regions (marked by red) are smaller and lay on more salient regions (e.g. eyes, ears, nose rather than 
skin). Moreover, the DINO-ViT model seems to activate on multiple salient regions rather than one (e.g. activat-
ing on the ears, eyes and nose rather than just the ears on the top-right example). We attribute the success of ViT 
based models to the ability of ViTs to provide a more localized signal than the ResNet models. This stems from 
their architecture—the resolution of ViT features remains constant throughout the layers, while the resolution 
of CNN features diminishes as the layers become deeper.

While reaching definitive conclusions requires further research, we experimented with the EigenCAM method 
focusing our attention on frames satisfying the following conditions: (i) manually coded with the ‘Ears Flattener’ 
variable, and (ii) belonging to the class of video samples of the negative condition, and (iii) correctly classified 
by the DINO-ViT network as negative condition. In our analysis, we divided the examples into three categories, 
as demonstrated on Fig. 7. Examples of category A are heatmaps with a clear focus on the ears only. This can 
be seen as consistent with DogFACS-related ‘Ears Flattener’ explanation, i.e., it may be the case that the model 
learnt patterns related to ear movement. Category B is also consistent with this, showing heatmaps focusing 
on both ears and other areas, such as eyes, forehead, nose and mouth. The latter may also be indirectly related 
to the ‘Ears Flattener’ movement, as well as to other DogFACS variables or some other postural feature which 
may be present in the frame. The most intriguing category, however, is category C: here the model picks up on 
signals from facial parts other than ears, still making the correct classifications. These cases may hold the key 
to understanding the sensitivity of the network to nuances not obviously visible to the human eye. In any case, 
it should be noted that DogFACS annotations cannot exhaustively cover all possible changes in facial behavior, 
which may be reflected in pixel patterns to which the network is sensitive. We then also extracted heatmaps 
from videos which had no annotated DogFACS variables. There were nine videos with no variables, eight of 
them ‘positive’ and one—‘negative’. Strikingly, the majority of these videos (77%) were still classified correctly 
by the model. This may be another indication of the model picking up on subtle facial behavior not captured by 
DogFACS. When examining the heatmaps produced for frames of these videos we observed that the nose-mouth 
area were a main focus for the model. Some other frames show focus on other facial parts, while there are cases 
of correctly classified frames but blurry and unclear heatmaps. Examples from these three categories are shown 
on Fig. 8. Interestingly, these heatmaps lack focus on specific facial parts, suggesting that indeed in these cases 
visual cues were less evident for the model.

Figure 6.   EigenCAM59 activation maps on several images for our four different models. The images in the top 
and bottom row are from positive and negative classes respectively. The DINO-ViT backbone addresses similar 
areas to those proposed by human annotated DogFACS variables.
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Figure 7.   Exploring frames with ‘Ears Flattener’ correctly classified as negative condition. Category (A) focus 
only on ears; Category (B) focus on ears and other facial parts; Category (C) focus on other facial parts.

Figure 8.   Exploring frames with no DogFACS variables correctly classified by the DNN. Category (A) focus 
mainly on nose-mouth area; Category (B) focus on other facial parts; Category (C) focus is blurry and not clear.
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Another notable issue related to both approaches with respect to performance is the short length of the 
videos (3 s) in the current dataset. Using longer videos leads to the challenge of identifying an optimal time 
window during which an internal state can be considered as constant. This problem has been considered in69 
in the context of low grade orthopedic pain in horses, and is an important direction for future research also for 
canine emotional states.

To summarize, this study demonstrated the value of two different automated classification approaches for 
two emotional states in dogs based on their facial expressions: a positive vs. negative condition. Both of them 
reached good accuracy comparable to other state-of-the-art methods in automated recognition of animal affect. 
These results not only provide for the first time an affirmative answer to the question ‘can machines recognize 
positive/negative dog emotions?’, but also open up new research paths of exploring how machines recognize 
them, and how to make this recognition explainable to humans. Further experimentation with larger datasets 
with broader participant characteristics will also promote our understanding of how to develop good animal 
emotion indicators. One specific direction which seems particularly promising is exploring the potential of 
approaches related to facial landmark detection, such as OpenFace70 and Google MediaPipe71. Similar approaches 
are just beginning to be explored for non-human animals, see, e.g. the study of Feighelstein et al.43 on cat faces. 
Like in the human domain, their development will require extensive multidisciplinary efforts for large dataset 
collection for various species.

Methods
Dataset.  The dataset relating to the dogs used for this study was collected previously under the following 
ethical approvals of the University of Lincoln, (UID: CoSREC252) as per Bremhorst et al.22 with an amendment 
to this research was obtained from the University of Lincoln for using the original dataset in the present study. 
The current protocol using this data was reviewed by the Ethical Committee of the University of Haifa and no 
further approval was required.

Cropping and preprocessing.  This step is relevant for both the DogFACS and deep approaches. The origi-
nal video frames contain background clutter including the surrounding room, humans, dog body, etc. We aim 
to focus on the facial expressions of the dogs and avoid learning other emotional state predictors (e.g. dog body 
postures). Hence, we trained a Mask-RCNN72 to identify canine faces, and used it to crop the facial bounding 
box from each image. We trained the Mask-RCNN on roughly 200 annotated images from this dataset, making 
it most suited for this specific experimental setup. Examples of facial crops acquired using the pre-processing 
stage can be seen in Fig. 2.

DogFacs‑based approach.  From videos to DogFACS variables.  The full pipeline is described in the fol-
lowing diagram see Fig. 9. It includes the following steps:

•	 Cropping dog faces out of the frames using the method described above.
•	 Building DogFACS variable datasets Using manual DogFACS coding of Bremhorst et al.22, for every Dog-

FACS variable, we created two folders with positive and negative examples (dog face either expressing or not 
expressing this DogFACS variable). For the positive samples (variable present), we selected the images of all 
frames manually coded with this variable. For the negative samples, we selected frames in videos not having 
the variable marked on their coding until the first appearance of that variable (or until the end of the video if 
not present). The datasets were then balanced, leaving an equal number of images for positive and negative 
examples for each variable. Table 4 shows the size of the datasets for all DogFACS variables for which detec-
tors were obtained.

From DogFACS variables to classification of emotional states.  We used transfer learning based on a pre-trained 
ResNet50 network architecture initialized with Imagenet weights. We replaced its top layer with an average pool 
layer, a 20 percentage drop out layer and a two classes classifier layer. The model was trained during 20 epochs 

Figure 9.   Frame to DogFACS variable detector pipeline description.
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using Adam optimizer with learning rate of 0.0001. The model achieving maximal accuracy on the validation 
dataset was selected as the best model. During the first 10 epochs, the weights of all layers were fine-tuned. Dur-
ing first 10 epochs, weight of all layers were fine-tuned. During the the remaining epochs, ResNet50 weights were 
frozen and only weights of new top layers were updated. For non-orientation related variables (‘Ears Flattener’, 
’Lips Part’, ‘Ears Adductor’, ‘Ears Forward’ and ‘Nose Lick’) we applied an augmentation technique based on 
random image horizontal flip and rotation of up to 20°. As input for the encoder we used an input table, where 
each row represents the presence (1)/absence (0) of each of the 11 DogFACS variables on each video. The target 
of the encoder is a table containing the condition (negative(0)/positive(1)) of each video.

Deep approach.  Until recently convolutional neural networks (CNNs) were considered state of the art in 
computer vision tasks. Recently the Vision Transformer (ViT)57 architecture emerged as an alternative73. The 
DINO method for training has only been introduced in 2021 as a self-distillation learning frame. Training sev-
eral DNN backbones (ResNet50, vit-small, vit-base etc) in this configuration it was shown that a ViT backbone 
trained with DINO approach outperforms previous classification results on ImageNet standard dataset74.

We used ResNet50 architecture for supervised and DINO-trained backbones; ViT-S/16 trained in a super-
vised manner and ViT-S/8 trained with DINO. We use pretrained ViT weights from the Timm Library75. We 
train all the four models for 30 epochs using Adam optimizer76 with betas = (0, 0.999) and learning rates: 10−4 for 
ResNet backbones and 5 · 10−6 for ViT backbone. The loss curves of the trained models are presented on Fig. 10.

Map visualization.  We opt for the Eigen-CAM method59 to visualize the principal components of the final 
activations for each model. It has been shown that Eigen-CAM provides more easily interpretable results with 
less computation compared to other CAM methods such as the popular Grad-CAM77. Moreover, unlike other 
visualization methods such as Grad-CAM59 and Grad-CAM++78, Eigen-CAM is a class-independent tool. This 
property enables Eigen-CAM to visualize learned patterns even when the model prediction is wrong, as opposed 
to older CAM methods that produce irrelevant maps when their prediction is incorrect. This property of Eigen-
CAM enables interpreting reasons for prediction failure. It is more consistent and class discriminative compared 
to other state of the art visualization methods. In addition, EigenCAM is not model-specific—it can be used for 
both ViTs and CNNs without changing layers.

Data availability
The dataset used in this paper is available upon request from the corresponding author.
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